MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difrp Structured version   Unicode version

Theorem difrp 11254
Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
difrp  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )

Proof of Theorem difrp
StepHypRef Expression
1 posdif 10046 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
2 resubcl 9884 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
32ancoms 453 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  -  A
)  e.  RR )
4 elrp 11223 . . . 4  |-  ( ( B  -  A )  e.  RR+  <->  ( ( B  -  A )  e.  RR  /\  0  < 
( B  -  A
) ) )
54baib 901 . . 3  |-  ( ( B  -  A )  e.  RR  ->  (
( B  -  A
)  e.  RR+  <->  0  <  ( B  -  A ) ) )
63, 5syl 16 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  -  A )  e.  RR+  <->  0  <  ( B  -  A ) ) )
71, 6bitr4d 256 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1767   class class class wbr 4447  (class class class)co 6285   RRcr 9492   0cc0 9493    < clt 9629    - cmin 9806   RR+crp 11221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-pnf 9631  df-mnf 9632  df-ltxr 9634  df-sub 9808  df-neg 9809  df-rp 11222
This theorem is referenced by:  xralrple  11405  lincmb01cmp  11664  iccf1o  11665  expmulnbnd  12267  fsumlt  13580  expcnv  13641  blssps  20754  blss  20755  icchmeo  21268  icopnfcnv  21269  icopnfhmeo  21270  ivthlem2  21691  ivthlem3  21692  c1liplem1  22224  lhop1lem  22241  ftc1lem4  22267  aaliou3lem7  22571  abelthlem7  22659  cosordlem  22743  logdivlti  22830  cxpaddlelem  22950  atantan  23079  birthdaylem3  23108  chtppilimlem2  23484  pntrlog2bndlem5  23591  pntlemd  23604  pntlemc  23605  ostth2lem1  23628  ttgcontlem1  23961  lt2addrd  27328  signsplypnf  28258  lgamgulmlem2  28323  lgamgulmlem3  28324  ftc1cnnclem  29941
  Copyright terms: Public domain W3C validator