MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difreicc Structured version   Unicode version

Theorem difreicc 11621
Description: The class difference of  RR and a closed interval. (Contributed by FL, 18-Jun-2007.)
Assertion
Ref Expression
difreicc  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( RR  \  ( A [,] B ) )  =  ( ( -oo (,) A )  u.  ( B (,) +oo ) ) )

Proof of Theorem difreicc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldif 3421 . . 3  |-  ( x  e.  ( RR  \ 
( A [,] B
) )  <->  ( x  e.  RR  /\  -.  x  e.  ( A [,] B
) ) )
2 rexr 9587 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  RR* )
3 rexr 9587 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  e.  RR* )
4 elicc1 11542 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A [,] B )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <_  B
) ) )
52, 3, 4syl2an 475 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR*  /\  A  <_  x  /\  x  <_  B ) ) )
65adantr 463 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( x  e.  ( A [,] B
)  <->  ( x  e. 
RR*  /\  A  <_  x  /\  x  <_  B
) ) )
76notbid 292 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( -.  x  e.  ( A [,] B
)  <->  -.  ( x  e.  RR*  /\  A  <_  x  /\  x  <_  B
) ) )
8 3anass 976 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  A  <_  x  /\  x  <_  B )  <->  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <_  B ) ) )
98notbii 294 . . . . . . . 8  |-  ( -.  ( x  e.  RR*  /\  A  <_  x  /\  x  <_  B )  <->  -.  (
x  e.  RR*  /\  ( A  <_  x  /\  x  <_  B ) ) )
10 ianor 486 . . . . . . . . 9  |-  ( -.  ( x  e.  RR*  /\  ( A  <_  x  /\  x  <_  B ) )  <->  ( -.  x  e.  RR*  \/  -.  ( A  <_  x  /\  x  <_  B ) ) )
11 rexr 9587 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  x  e.  RR* )
1211pm2.24d 143 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( -.  x  e.  RR*  ->  ( x  e.  ( -oo (,) A )  \/  x  e.  ( B (,) +oo ) ) ) )
1312adantl 464 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( -.  x  e.  RR*  ->  ( x  e.  ( -oo (,) A
)  \/  x  e.  ( B (,) +oo ) ) ) )
14 ianor 486 . . . . . . . . . . 11  |-  ( -.  ( A  <_  x  /\  x  <_  B )  <-> 
( -.  A  <_  x  \/  -.  x  <_  B ) )
1511ad2antlr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  -.  A  <_  x )  ->  x  e.  RR* )
16 mnflt 11302 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  -> -oo  <  x )
1716ad2antlr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  -.  A  <_  x )  -> -oo  <  x )
18 simpr 459 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  x  e.  RR )
19 simpll 752 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  A  e.  RR )
20 ltnle 9613 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x  <  A  <->  -.  A  <_  x )
)
2120bicomd 201 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( -.  A  <_  x 
<->  x  <  A ) )
2218, 19, 21syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( -.  A  <_  x  <->  x  <  A ) )
2322biimpa 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  -.  A  <_  x )  ->  x  <  A )
24 mnfxr 11292 . . . . . . . . . . . . . . 15  |- -oo  e.  RR*
252ad3antrrr 728 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  -.  A  <_  x )  ->  A  e.  RR* )
26 elioo1 11538 . . . . . . . . . . . . . . 15  |-  ( ( -oo  e.  RR*  /\  A  e.  RR* )  ->  (
x  e.  ( -oo (,) A )  <->  ( x  e.  RR*  /\ -oo  <  x  /\  x  <  A
) ) )
2724, 25, 26sylancr 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  -.  A  <_  x )  -> 
( x  e.  ( -oo (,) A )  <-> 
( x  e.  RR*  /\ -oo  <  x  /\  x  <  A ) ) )
2815, 17, 23, 27mpbir3and 1178 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  -.  A  <_  x )  ->  x  e.  ( -oo (,) A ) )
2928ex 432 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( -.  A  <_  x  ->  x  e.  ( -oo (,) A ) ) )
30 ltnle 9613 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR  /\  x  e.  RR )  ->  ( B  <  x  <->  -.  x  <_  B )
)
3130adantll 712 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( B  < 
x  <->  -.  x  <_  B ) )
3211ad2antlr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  B  <  x )  ->  x  e.  RR* )
33 simpr 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  B  <  x )  ->  B  <  x )
34 ltpnf 11300 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  x  < +oo )
3534ad2antlr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  B  <  x )  ->  x  < +oo )
363ad3antlr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  B  <  x )  ->  B  e.  RR* )
37 pnfxr 11290 . . . . . . . . . . . . . . . 16  |- +oo  e.  RR*
38 elioo1 11538 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  RR*  /\ +oo  e.  RR* )  ->  (
x  e.  ( B (,) +oo )  <->  ( x  e.  RR*  /\  B  < 
x  /\  x  < +oo ) ) )
3936, 37, 38sylancl 660 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  B  <  x )  ->  (
x  e.  ( B (,) +oo )  <->  ( x  e.  RR*  /\  B  < 
x  /\  x  < +oo ) ) )
4032, 33, 35, 39mpbir3and 1178 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  B  <  x )  ->  x  e.  ( B (,) +oo ) )
4140ex 432 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( B  < 
x  ->  x  e.  ( B (,) +oo )
) )
4231, 41sylbird 235 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( -.  x  <_  B  ->  x  e.  ( B (,) +oo )
) )
4329, 42orim12d 837 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( ( -.  A  <_  x  \/  -.  x  <_  B )  ->  ( x  e.  ( -oo (,) A
)  \/  x  e.  ( B (,) +oo ) ) ) )
4414, 43syl5bi 217 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( -.  ( A  <_  x  /\  x  <_  B )  ->  (
x  e.  ( -oo (,) A )  \/  x  e.  ( B (,) +oo ) ) ) )
4513, 44jaod 378 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( ( -.  x  e.  RR*  \/  -.  ( A  <_  x  /\  x  <_  B ) )  ->  ( x  e.  ( -oo (,) A
)  \/  x  e.  ( B (,) +oo ) ) ) )
4610, 45syl5bi 217 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( -.  (
x  e.  RR*  /\  ( A  <_  x  /\  x  <_  B ) )  -> 
( x  e.  ( -oo (,) A )  \/  x  e.  ( B (,) +oo )
) ) )
479, 46syl5bi 217 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( -.  (
x  e.  RR*  /\  A  <_  x  /\  x  <_  B )  ->  (
x  e.  ( -oo (,) A )  \/  x  e.  ( B (,) +oo ) ) ) )
487, 47sylbid 215 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( -.  x  e.  ( A [,] B
)  ->  ( x  e.  ( -oo (,) A
)  \/  x  e.  ( B (,) +oo ) ) ) )
4948expimpd 601 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  e.  RR  /\  -.  x  e.  ( A [,] B
) )  ->  (
x  e.  ( -oo (,) A )  \/  x  e.  ( B (,) +oo ) ) ) )
50 elun 3581 . . . . 5  |-  ( x  e.  ( ( -oo (,) A )  u.  ( B (,) +oo ) )  <-> 
( x  e.  ( -oo (,) A )  \/  x  e.  ( B (,) +oo )
) )
5149, 50syl6ibr 227 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  e.  RR  /\  -.  x  e.  ( A [,] B
) )  ->  x  e.  ( ( -oo (,) A )  u.  ( B (,) +oo ) ) ) )
52 ioossre 11555 . . . . . . . . 9  |-  ( -oo (,) A )  C_  RR
53 ioossre 11555 . . . . . . . . 9  |-  ( B (,) +oo )  C_  RR
5452, 53unssi 3615 . . . . . . . 8  |-  ( ( -oo (,) A )  u.  ( B (,) +oo ) )  C_  RR
5554sseli 3435 . . . . . . 7  |-  ( x  e.  ( ( -oo (,) A )  u.  ( B (,) +oo ) )  ->  x  e.  RR )
5655adantl 464 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  ( ( -oo (,) A
)  u.  ( B (,) +oo ) ) )  ->  x  e.  RR )
57 elioo2 11539 . . . . . . . . . . . . . . . 16  |-  ( ( -oo  e.  RR*  /\  A  e.  RR* )  ->  (
x  e.  ( -oo (,) A )  <->  ( x  e.  RR  /\ -oo  <  x  /\  x  <  A
) ) )
5824, 2, 57sylancr 661 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  (
x  e.  ( -oo (,) A )  <->  ( x  e.  RR  /\ -oo  <  x  /\  x  <  A
) ) )
5958adantr 463 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( -oo (,) A )  <-> 
( x  e.  RR  /\ -oo  <  x  /\  x  <  A ) ) )
6020biimpd 207 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x  <  A  ->  -.  A  <_  x
) )
6160ex 432 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  ( A  e.  RR  ->  ( x  <  A  ->  -.  A  <_  x ) ) )
6261a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( -oo  <  x  ->  ( x  e.  RR  ->  ( A  e.  RR  ->  ( x  <  A  ->  -.  A  <_  x ) ) ) )
6362com13 80 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  (
x  e.  RR  ->  ( -oo  <  x  ->  ( x  <  A  ->  -.  A  <_  x ) ) ) )
6463adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  RR  ->  ( -oo  <  x  ->  ( x  <  A  ->  -.  A  <_  x
) ) ) )
65643impd 1209 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  e.  RR  /\ -oo  <  x  /\  x  <  A
)  ->  -.  A  <_  x ) )
6659, 65sylbid 215 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( -oo (,) A )  ->  -.  A  <_  x ) )
673adantl 464 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR* )
6867, 37, 38sylancl 660 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( B (,) +oo )  <->  ( x  e.  RR*  /\  B  <  x  /\  x  < +oo ) ) )
69 xrltnle 9601 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( B  e.  RR*  /\  x  e.  RR* )  ->  ( B  <  x  <->  -.  x  <_  B ) )
7069biimpd 207 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( B  e.  RR*  /\  x  e.  RR* )  ->  ( B  <  x  ->  -.  x  <_  B ) )
7170ex 432 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  RR*  ->  ( x  e.  RR*  ->  ( B  <  x  ->  -.  x  <_  B ) ) )
7271com3l 81 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR*  ->  ( B  <  x  ->  ( B  e.  RR*  ->  -.  x  <_  B ) ) )
7372a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( x  < +oo  ->  ( x  e.  RR*  ->  ( B  <  x  ->  ( B  e.  RR*  ->  -.  x  <_  B ) ) ) )
7473com14 88 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  RR*  ->  ( x  e.  RR*  ->  ( B  <  x  ->  (
x  < +oo  ->  -.  x  <_  B ) ) ) )
753, 74syl 17 . . . . . . . . . . . . . . . 16  |-  ( B  e.  RR  ->  (
x  e.  RR*  ->  ( B  <  x  -> 
( x  < +oo  ->  -.  x  <_  B
) ) ) )
7675adantl 464 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  RR*  ->  ( B  <  x  ->  ( x  < +oo  ->  -.  x  <_  B
) ) ) )
77763impd 1209 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  e. 
RR*  /\  B  <  x  /\  x  < +oo )  ->  -.  x  <_  B ) )
7868, 77sylbid 215 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( B (,) +oo )  ->  -.  x  <_  B
) )
7966, 78orim12d 837 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  e.  ( -oo (,) A
)  \/  x  e.  ( B (,) +oo ) )  ->  ( -.  A  <_  x  \/ 
-.  x  <_  B
) ) )
8050, 79syl5bi 217 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( ( -oo (,) A
)  u.  ( B (,) +oo ) )  ->  ( -.  A  <_  x  \/  -.  x  <_  B ) ) )
8180imp 427 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  ( ( -oo (,) A
)  u.  ( B (,) +oo ) ) )  ->  ( -.  A  <_  x  \/  -.  x  <_  B ) )
8281, 14sylibr 212 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  ( ( -oo (,) A
)  u.  ( B (,) +oo ) ) )  ->  -.  ( A  <_  x  /\  x  <_  B ) )
8382intnand 915 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  ( ( -oo (,) A
)  u.  ( B (,) +oo ) ) )  ->  -.  (
x  e.  RR*  /\  ( A  <_  x  /\  x  <_  B ) ) )
8483, 8sylnibr 303 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  ( ( -oo (,) A
)  u.  ( B (,) +oo ) ) )  ->  -.  (
x  e.  RR*  /\  A  <_  x  /\  x  <_  B ) )
852, 3anim12i 564 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  e.  RR*  /\  B  e.  RR* )
)
8685adantr 463 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  ( ( -oo (,) A
)  u.  ( B (,) +oo ) ) )  ->  ( A  e.  RR*  /\  B  e. 
RR* ) )
874notbid 292 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  x  e.  ( A [,] B )  <->  -.  (
x  e.  RR*  /\  A  <_  x  /\  x  <_  B ) ) )
8886, 87syl 17 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  ( ( -oo (,) A
)  u.  ( B (,) +oo ) ) )  ->  ( -.  x  e.  ( A [,] B )  <->  -.  (
x  e.  RR*  /\  A  <_  x  /\  x  <_  B ) ) )
8984, 88mpbird 232 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  ( ( -oo (,) A
)  u.  ( B (,) +oo ) ) )  ->  -.  x  e.  ( A [,] B
) )
9056, 89jca 530 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  ( ( -oo (,) A
)  u.  ( B (,) +oo ) ) )  ->  ( x  e.  RR  /\  -.  x  e.  ( A [,] B
) ) )
9190ex 432 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( ( -oo (,) A
)  u.  ( B (,) +oo ) )  ->  ( x  e.  RR  /\  -.  x  e.  ( A [,] B
) ) ) )
9251, 91impbid 191 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  e.  RR  /\  -.  x  e.  ( A [,] B
) )  <->  x  e.  ( ( -oo (,) A )  u.  ( B (,) +oo ) ) ) )
931, 92syl5bb 257 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( RR  \  ( A [,] B ) )  <-> 
x  e.  ( ( -oo (,) A )  u.  ( B (,) +oo ) ) ) )
9493eqrdv 2397 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( RR  \  ( A [,] B ) )  =  ( ( -oo (,) A )  u.  ( B (,) +oo ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 972    = wceq 1403    e. wcel 1840    \ cdif 3408    u. cun 3409   class class class wbr 4392  (class class class)co 6232   RRcr 9439   +oocpnf 9573   -oocmnf 9574   RR*cxr 9575    < clt 9576    <_ cle 9577   (,)cioo 11498   [,]cicc 11501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-cnex 9496  ax-resscn 9497  ax-pre-lttri 9514  ax-pre-lttrn 9515
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-op 3976  df-uni 4189  df-iun 4270  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4735  df-po 4741  df-so 4742  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-1st 6736  df-2nd 6737  df-er 7266  df-en 7473  df-dom 7474  df-sdom 7475  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582  df-ioo 11502  df-icc 11505
This theorem is referenced by:  icccld  21456  iccmbl  22158  mbfimaicc  22222  icccncfext  37025
  Copyright terms: Public domain W3C validator