Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difprsnss Structured version   Visualization version   Unicode version

Theorem difprsnss 4107
 Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difprsnss

Proof of Theorem difprsnss
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 3048 . . . . 5
21elpr 3986 . . . 4
3 elsn 3982 . . . . 5
43notbii 298 . . . 4
5 biorf 407 . . . . 5
65biimparc 490 . . . 4
72, 4, 6syl2anb 482 . . 3
8 eldif 3414 . . 3
9 elsn 3982 . . 3
107, 8, 93imtr4i 270 . 2
1110ssriv 3436 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wo 370   wa 371   wceq 1444   wcel 1887   cdif 3401   wss 3404  csn 3968  cpr 3970 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-sn 3969  df-pr 3971 This theorem is referenced by:  en2other2  8440  pmtrprfv  17094  itg11  22649
 Copyright terms: Public domain W3C validator