Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difindir Structured version   Unicode version

Theorem difindir 3708
 Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difindir

Proof of Theorem difindir
StepHypRef Expression
1 inindir 3671 . 2
2 invdif 3694 . 2
3 invdif 3694 . . 3
4 invdif 3694 . . 3
53, 4ineq12i 3653 . 2
61, 2, 53eqtr3i 2489 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1370  cvv 3072   cdif 3428   cin 3430 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ral 2801  df-rab 2805  df-v 3074  df-dif 3434  df-in 3438 This theorem is referenced by:  ablfac1eulem  16690  bwthOLD  19141  ballotlemgun  27046
 Copyright terms: Public domain W3C validator