MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difindi Structured version   Unicode version

Theorem difindi 3733
Description: Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difindi  |-  ( A 
\  ( B  i^i  C ) )  =  ( ( A  \  B
)  u.  ( A 
\  C ) )

Proof of Theorem difindi
StepHypRef Expression
1 dfin3 3718 . . 3  |-  ( B  i^i  C )  =  ( _V  \  (
( _V  \  B
)  u.  ( _V 
\  C ) ) )
21difeq2i 3586 . 2  |-  ( A 
\  ( B  i^i  C ) )  =  ( A  \  ( _V 
\  ( ( _V 
\  B )  u.  ( _V  \  C
) ) ) )
3 indi 3725 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  u.  ( _V  \  C
) ) )  =  ( ( A  i^i  ( _V  \  B ) )  u.  ( A  i^i  ( _V  \  C ) ) )
4 dfin2 3715 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  u.  ( _V  \  C
) ) )  =  ( A  \  ( _V  \  ( ( _V 
\  B )  u.  ( _V  \  C
) ) ) )
5 invdif 3720 . . . 4  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)
6 invdif 3720 . . . 4  |-  ( A  i^i  ( _V  \  C ) )  =  ( A  \  C
)
75, 6uneq12i 3624 . . 3  |-  ( ( A  i^i  ( _V 
\  B ) )  u.  ( A  i^i  ( _V  \  C ) ) )  =  ( ( A  \  B
)  u.  ( A 
\  C ) )
83, 4, 73eqtr3i 2466 . 2  |-  ( A 
\  ( _V  \ 
( ( _V  \  B )  u.  ( _V  \  C ) ) ) )  =  ( ( A  \  B
)  u.  ( A 
\  C ) )
92, 8eqtri 2458 1  |-  ( A 
\  ( B  i^i  C ) )  =  ( ( A  \  B
)  u.  ( A 
\  C ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437   _Vcvv 3087    \ cdif 3439    u. cun 3440    i^i cin 3441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ral 2787  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449
This theorem is referenced by:  difdif2  3736  indm  3738  fndifnfp  6108  dprddisj2  17607  fctop  19950  cctop  19952  mretopd  20039  restcld  20119  cfinfil  20839  csdfil  20840  indifundif  27988  difres  28050  unelcarsg  28973  salincl  37730
  Copyright terms: Public domain W3C validator