MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin Structured version   Unicode version

Theorem difin 3687
Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )

Proof of Theorem difin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pm4.61 426 . . 3  |-  ( -.  ( x  e.  A  ->  x  e.  B )  <-> 
( x  e.  A  /\  -.  x  e.  B
) )
2 anclb 547 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  B )  <->  ( x  e.  A  -> 
( x  e.  A  /\  x  e.  B
) ) )
3 elin 3639 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
43imbi2i 312 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  ( A  i^i  B ) )  <->  ( x  e.  A  ->  ( x  e.  A  /\  x  e.  B ) ) )
5 iman 424 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  ( A  i^i  B ) )  <->  -.  (
x  e.  A  /\  -.  x  e.  ( A  i^i  B ) ) )
62, 4, 53bitr2i 273 . . . 4  |-  ( ( x  e.  A  ->  x  e.  B )  <->  -.  ( x  e.  A  /\  -.  x  e.  ( A  i^i  B ) ) )
76con2bii 332 . . 3  |-  ( ( x  e.  A  /\  -.  x  e.  ( A  i^i  B ) )  <->  -.  ( x  e.  A  ->  x  e.  B ) )
8 eldif 3438 . . 3  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
91, 7, 83bitr4i 277 . 2  |-  ( ( x  e.  A  /\  -.  x  e.  ( A  i^i  B ) )  <-> 
x  e.  ( A 
\  B ) )
109difeqri 3576 1  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    \ cdif 3425    i^i cin 3427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-v 3072  df-dif 3431  df-in 3435
This theorem is referenced by:  dfin4  3690  indif  3692  symdif1  3715  notrab  3727  dfsdom2  7536  hashdif  12272  isercolllem3  13248  iuncld  18767  llycmpkgen2  19241  1stckgen  19245  ptbasfi  19272  txkgen  19343  cmmbl  21134  disjdifprg2  26056  onint1  28431  bj-disjdif  32748
  Copyright terms: Public domain W3C validator