Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin Structured version   Unicode version

Theorem difin 3711
 Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin

Proof of Theorem difin
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 pm4.61 428 . . 3
2 anclb 550 . . . . 5
3 elin 3650 . . . . . 6
43imbi2i 314 . . . . 5
5 iman 426 . . . . 5
62, 4, 53bitr2i 277 . . . 4
76con2bii 334 . . 3
8 eldif 3447 . . 3
91, 7, 83bitr4i 281 . 2
109difeqri 3586 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wa 371   wceq 1438   wcel 1869   cdif 3434   cin 3436 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-v 3084  df-dif 3440  df-in 3444 This theorem is referenced by:  dfin4  3714  indif  3716  dfsymdif3  3739  symdif1OLD  3740  notrab  3751  disjdif2  3875  dfsdom2  7699  hashdif  12589  isercolllem3  13723  iuncld  20052  llycmpkgen2  20557  1stckgen  20561  txkgen  20659  cmmbl  22480  disjdifprg2  28182  ldgenpisyslem1  28987  onint1  31108  nzprmdif  36532
 Copyright terms: Public domain W3C validator