Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difidALT Structured version   Unicode version

Theorem difidALT 3843
 Description: Alternate proof of difid 3842. (Contributed by David Abernethy, 17-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
difidALT

Proof of Theorem difidALT
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfdif2 3425 . 2
2 dfnul3 3743 . 2
31, 2eqtr4i 2436 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wceq 1407   wcel 1844  crab 2760   cdif 3413  c0 3740 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382 This theorem depends on definitions:  df-bi 187  df-an 371  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-rab 2765  df-v 3063  df-dif 3419  df-nul 3741 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator