MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difelfznle Structured version   Visualization version   Unicode version

Theorem difelfznle 11902
Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfznle  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  e.  ( 0 ... N ) )

Proof of Theorem difelfznle
StepHypRef Expression
1 elfz2nn0 11882 . . . . . 6  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
2 nn0addcl 10902 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN0 )
32nn0zd 11035 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  ZZ )
433adant3 1027 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( M  +  N )  e.  ZZ )
51, 4sylbi 199 . . . . 5  |-  ( M  e.  ( 0 ... N )  ->  ( M  +  N )  e.  ZZ )
6 elfzelz 11797 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
7 zsubcl 10976 . . . . 5  |-  ( ( ( M  +  N
)  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( M  +  N )  -  K
)  e.  ZZ )
85, 6, 7syl2anr 481 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( ( M  +  N )  -  K )  e.  ZZ )
983adant3 1027 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  e.  ZZ )
106zred 11037 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  K  e.  RR )
1110adantr 467 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  K  e.  RR )
12 elfzel2 11795 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ZZ )
1312zred 11037 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  N  e.  RR )
1413adantr 467 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  N  e.  RR )
15 nn0readdcl 10928 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  RR )
16153adant3 1027 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( M  +  N )  e.  RR )
171, 16sylbi 199 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  ->  ( M  +  N )  e.  RR )
1817adantl 468 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( M  +  N )  e.  RR )
19 elfzle2 11800 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
20 elfzle1 11799 . . . . . . . 8  |-  ( M  e.  ( 0 ... N )  ->  0  <_  M )
21 nn0re 10875 . . . . . . . . . . . 12  |-  ( M  e.  NN0  ->  M  e.  RR )
22 nn0re 10875 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
2321, 22anim12ci 570 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  e.  RR  /\  M  e.  RR ) )
24233adant3 1027 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( N  e.  RR  /\  M  e.  RR ) )
251, 24sylbi 199 . . . . . . . . 9  |-  ( M  e.  ( 0 ... N )  ->  ( N  e.  RR  /\  M  e.  RR ) )
26 addge02 10122 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( 0  <_  M  <->  N  <_  ( M  +  N ) ) )
2725, 26syl 17 . . . . . . . 8  |-  ( M  e.  ( 0 ... N )  ->  (
0  <_  M  <->  N  <_  ( M  +  N ) ) )
2820, 27mpbid 214 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  ->  N  <_  ( M  +  N
) )
2919, 28anim12i 569 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( K  <_  N  /\  N  <_  ( M  +  N )
) )
30 letr 9724 . . . . . . 7  |-  ( ( K  e.  RR  /\  N  e.  RR  /\  ( M  +  N )  e.  RR )  ->  (
( K  <_  N  /\  N  <_  ( M  +  N ) )  ->  K  <_  ( M  +  N )
) )
3130imp 431 . . . . . 6  |-  ( ( ( K  e.  RR  /\  N  e.  RR  /\  ( M  +  N
)  e.  RR )  /\  ( K  <_  N  /\  N  <_  ( M  +  N )
) )  ->  K  <_  ( M  +  N
) )
3211, 14, 18, 29, 31syl31anc 1270 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  K  <_  ( M  +  N )
)
33323adant3 1027 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  K  <_  ( M  +  N )
)
34 zre 10938 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  RR )
3521, 22anim12i 569 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  e.  RR  /\  N  e.  RR ) )
36353adant3 1027 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( M  e.  RR  /\  N  e.  RR ) )
371, 36sylbi 199 . . . . . . . . 9  |-  ( M  e.  ( 0 ... N )  ->  ( M  e.  RR  /\  N  e.  RR ) )
38 readdcl 9619 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  +  N
)  e.  RR )
3937, 38syl 17 . . . . . . . 8  |-  ( M  e.  ( 0 ... N )  ->  ( M  +  N )  e.  RR )
4034, 39anim12ci 570 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ( 0 ... N ) )  ->  ( ( M  +  N )  e.  RR  /\  K  e.  RR ) )
416, 40sylan 474 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( ( M  +  N )  e.  RR  /\  K  e.  RR ) )
42413adant3 1027 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  e.  RR  /\  K  e.  RR ) )
43 subge0 10124 . . . . 5  |-  ( ( ( M  +  N
)  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  (
( M  +  N
)  -  K )  <-> 
K  <_  ( M  +  N ) ) )
4442, 43syl 17 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( 0  <_ 
( ( M  +  N )  -  K
)  <->  K  <_  ( M  +  N ) ) )
4533, 44mpbird 236 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  0  <_  (
( M  +  N
)  -  K ) )
46 elnn0z 10947 . . 3  |-  ( ( ( M  +  N
)  -  K )  e.  NN0  <->  ( ( ( M  +  N )  -  K )  e.  ZZ  /\  0  <_ 
( ( M  +  N )  -  K
) ) )
479, 45, 46sylanbrc 669 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  e.  NN0 )
48 elfz3nn0 11885 . . 3  |-  ( K  e.  ( 0 ... N )  ->  N  e.  NN0 )
49483ad2ant1 1028 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  N  e.  NN0 )
50 elfzelz 11797 . . . . . 6  |-  ( M  e.  ( 0 ... N )  ->  M  e.  ZZ )
51 zre 10938 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  RR )
52 ltnle 9710 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( M  <  K  <->  -.  K  <_  M )
)
5352ancoms 455 . . . . . . . 8  |-  ( ( K  e.  RR  /\  M  e.  RR )  ->  ( M  <  K  <->  -.  K  <_  M )
)
54 ltle 9719 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( M  <  K  ->  M  <_  K )
)
5554ancoms 455 . . . . . . . 8  |-  ( ( K  e.  RR  /\  M  e.  RR )  ->  ( M  <  K  ->  M  <_  K )
)
5653, 55sylbird 239 . . . . . . 7  |-  ( ( K  e.  RR  /\  M  e.  RR )  ->  ( -.  K  <_  M  ->  M  <_  K
) )
5734, 51, 56syl2an 480 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( -.  K  <_  M  ->  M  <_  K
) )
586, 50, 57syl2an 480 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( -.  K  <_  M  ->  M  <_  K ) )
59583impia 1204 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  M  <_  K
)
6050zred 11037 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  ->  M  e.  RR )
6160adantl 468 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  M  e.  RR )
6261, 11, 14leadd1d 10204 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( M  <_  K 
<->  ( M  +  N
)  <_  ( K  +  N ) ) )
63623adant3 1027 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( M  <_  K 
<->  ( M  +  N
)  <_  ( K  +  N ) ) )
6459, 63mpbid 214 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( M  +  N )  <_  ( K  +  N )
)
6518, 11, 14lesubadd2d 10209 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( ( ( M  +  N )  -  K )  <_  N 
<->  ( M  +  N
)  <_  ( K  +  N ) ) )
66653adant3 1027 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( ( M  +  N )  -  K )  <_  N 
<->  ( M  +  N
)  <_  ( K  +  N ) ) )
6764, 66mpbird 236 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  <_  N
)
68 elfz2nn0 11882 . 2  |-  ( ( ( M  +  N
)  -  K )  e.  ( 0 ... N )  <->  ( (
( M  +  N
)  -  K )  e.  NN0  /\  N  e. 
NN0  /\  ( ( M  +  N )  -  K )  <_  N
) )
6947, 49, 67, 68syl3anbrc 1191 1  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  e.  ( 0 ... N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    e. wcel 1886   class class class wbr 4401  (class class class)co 6288   RRcr 9535   0cc0 9536    + caddc 9539    < clt 9672    <_ cle 9673    - cmin 9857   NN0cn0 10866   ZZcz 10934   ...cfz 11781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-nn 10607  df-n0 10867  df-z 10935  df-uz 11157  df-fz 11782
This theorem is referenced by:  2cshwcshw  12919
  Copyright terms: Public domain W3C validator