MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difelfzle Structured version   Unicode version

Theorem difelfzle 11843
Description: The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfzle  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( M  -  K
)  e.  ( 0 ... N ) )

Proof of Theorem difelfzle
StepHypRef Expression
1 elfznn0 11826 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
2 elfznn0 11826 . . . . 5  |-  ( M  e.  ( 0 ... N )  ->  M  e.  NN0 )
3 nn0z 10928 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  e.  ZZ )
4 nn0z 10928 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  ZZ )
5 zsubcl 10947 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  -  K
)  e.  ZZ )
63, 4, 5syl2anr 476 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( M  -  K
)  e.  ZZ )
76adantr 463 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  K  <_  M )  ->  ( M  -  K )  e.  ZZ )
8 nn0re 10845 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  e.  RR )
9 nn0re 10845 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  RR )
10 subge0 10106 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  ( M  -  K )  <->  K  <_  M ) )
118, 9, 10syl2anr 476 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( 0  <_  ( M  -  K )  <->  K  <_  M ) )
1211biimpar 483 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  K  <_  M )  ->  0  <_  ( M  -  K )
)
137, 12jca 530 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  K  <_  M )  ->  ( ( M  -  K )  e.  ZZ  /\  0  <_ 
( M  -  K
) ) )
1413exp31 602 . . . . 5  |-  ( K  e.  NN0  ->  ( M  e.  NN0  ->  ( K  <_  M  ->  (
( M  -  K
)  e.  ZZ  /\  0  <_  ( M  -  K ) ) ) ) )
151, 2, 14syl2im 36 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( M  e.  ( 0 ... N )  -> 
( K  <_  M  ->  ( ( M  -  K )  e.  ZZ  /\  0  <_  ( M  -  K ) ) ) ) )
16153imp 1191 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( ( M  -  K )  e.  ZZ  /\  0  <_  ( M  -  K ) ) )
17 elnn0z 10918 . . 3  |-  ( ( M  -  K )  e.  NN0  <->  ( ( M  -  K )  e.  ZZ  /\  0  <_ 
( M  -  K
) ) )
1816, 17sylibr 212 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( M  -  K
)  e.  NN0 )
19 elfz3nn0 11827 . . 3  |-  ( K  e.  ( 0 ... N )  ->  N  e.  NN0 )
20193ad2ant1 1018 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  ->  N  e.  NN0 )
21 elfz2nn0 11824 . . . . . 6  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
2283ad2ant1 1018 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  RR )
23 resubcl 9919 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( M  -  K
)  e.  RR )
2422, 9, 23syl2an 475 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
( M  -  K
)  e.  RR )
2522adantr 463 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  ->  M  e.  RR )
26 nn0re 10845 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
27263ad2ant2 1019 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  N  e.  RR )
2827adantr 463 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  ->  N  e.  RR )
29 nn0ge0 10862 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  0  <_  K )
3029adantl 464 . . . . . . . . 9  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
0  <_  K )
31 subge02 10109 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  K  <->  ( M  -  K )  <_  M ) )
3222, 9, 31syl2an 475 . . . . . . . . 9  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
( 0  <_  K  <->  ( M  -  K )  <_  M ) )
3330, 32mpbid 210 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
( M  -  K
)  <_  M )
34 simpl3 1002 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  ->  M  <_  N )
3524, 25, 28, 33, 34letrd 9773 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
( M  -  K
)  <_  N )
3635ex 432 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( K  e.  NN0  ->  ( M  -  K )  <_  N ) )
3721, 36sylbi 195 . . . . 5  |-  ( M  e.  ( 0 ... N )  ->  ( K  e.  NN0  ->  ( M  -  K )  <_  N ) )
381, 37syl5com 28 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( M  e.  ( 0 ... N )  -> 
( M  -  K
)  <_  N )
)
3938a1dd 44 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( M  e.  ( 0 ... N )  -> 
( K  <_  M  ->  ( M  -  K
)  <_  N )
) )
40393imp 1191 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( M  -  K
)  <_  N )
41 elfz2nn0 11824 . 2  |-  ( ( M  -  K )  e.  ( 0 ... N )  <->  ( ( M  -  K )  e.  NN0  /\  N  e. 
NN0  /\  ( M  -  K )  <_  N
) )
4218, 20, 40, 41syl3anbrc 1181 1  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( M  -  K
)  e.  ( 0 ... N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    e. wcel 1842   class class class wbr 4395  (class class class)co 6278   RRcr 9521   0cc0 9522    <_ cle 9659    - cmin 9841   NN0cn0 10836   ZZcz 10905   ...cfz 11726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727
This theorem is referenced by:  2cshwcshw  12849
  Copyright terms: Public domain W3C validator