MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difdifdir Structured version   Unicode version

Theorem difdifdir 3831
Description: Distributive law for class difference. Exercise 4.8 of [Stoll] p. 16. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
difdifdir  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  ( B  \  C ) )

Proof of Theorem difdifdir
StepHypRef Expression
1 dif32 3686 . . . . 5  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  B
)
2 invdif 3664 . . . . 5  |-  ( ( A  \  C )  i^i  ( _V  \  B ) )  =  ( ( A  \  C )  \  B
)
31, 2eqtr4i 2414 . . . 4  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  i^i  ( _V  \  B ) )
4 un0 3737 . . . 4  |-  ( ( ( A  \  C
)  i^i  ( _V  \  B ) )  u.  (/) )  =  (
( A  \  C
)  i^i  ( _V  \  B ) )
53, 4eqtr4i 2414 . . 3  |-  ( ( A  \  B ) 
\  C )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (/) )
6 indi 3669 . . . 4  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (
( A  \  C
)  i^i  C )
)
7 disjdif 3816 . . . . . 6  |-  ( C  i^i  ( A  \  C ) )  =  (/)
8 incom 3605 . . . . . 6  |-  ( C  i^i  ( A  \  C ) )  =  ( ( A  \  C )  i^i  C
)
97, 8eqtr3i 2413 . . . . 5  |-  (/)  =  ( ( A  \  C
)  i^i  C )
109uneq2i 3569 . . . 4  |-  ( ( ( A  \  C
)  i^i  ( _V  \  B ) )  u.  (/) )  =  (
( ( A  \  C )  i^i  ( _V  \  B ) )  u.  ( ( A 
\  C )  i^i 
C ) )
116, 10eqtr4i 2414 . . 3  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (/) )
125, 11eqtr4i 2414 . 2  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  i^i  (
( _V  \  B
)  u.  C ) )
13 ddif 3550 . . . . 5  |-  ( _V 
\  ( _V  \  C ) )  =  C
1413uneq2i 3569 . . . 4  |-  ( ( _V  \  B )  u.  ( _V  \ 
( _V  \  C
) ) )  =  ( ( _V  \  B )  u.  C
)
15 indm 3682 . . . . 5  |-  ( _V 
\  ( B  i^i  ( _V  \  C ) ) )  =  ( ( _V  \  B
)  u.  ( _V 
\  ( _V  \  C ) ) )
16 invdif 3664 . . . . . 6  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
1716difeq2i 3533 . . . . 5  |-  ( _V 
\  ( B  i^i  ( _V  \  C ) ) )  =  ( _V  \  ( B 
\  C ) )
1815, 17eqtr3i 2413 . . . 4  |-  ( ( _V  \  B )  u.  ( _V  \ 
( _V  \  C
) ) )  =  ( _V  \  ( B  \  C ) )
1914, 18eqtr3i 2413 . . 3  |-  ( ( _V  \  B )  u.  C )  =  ( _V  \  ( B  \  C ) )
2019ineq2i 3611 . 2  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( A  \  C )  i^i  ( _V  \  ( B  \  C ) ) )
21 invdif 3664 . 2  |-  ( ( A  \  C )  i^i  ( _V  \ 
( B  \  C
) ) )  =  ( ( A  \  C )  \  ( B  \  C ) )
2212, 20, 213eqtri 2415 1  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  ( B  \  C ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1399   _Vcvv 3034    \ cdif 3386    u. cun 3387    i^i cin 3388   (/)c0 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rab 2741  df-v 3036  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator