MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difdif Structured version   Visualization version   Unicode version

Theorem difdif 3559
Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
difdif  |-  ( A 
\  ( B  \  A ) )  =  A

Proof of Theorem difdif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pm4.45im 565 . . 3  |-  ( x  e.  A  <->  ( x  e.  A  /\  (
x  e.  B  ->  x  e.  A )
) )
2 iman 426 . . . . 5  |-  ( ( x  e.  B  ->  x  e.  A )  <->  -.  ( x  e.  B  /\  -.  x  e.  A
) )
3 eldif 3414 . . . . 5  |-  ( x  e.  ( B  \  A )  <->  ( x  e.  B  /\  -.  x  e.  A ) )
42, 3xchbinxr 313 . . . 4  |-  ( ( x  e.  B  ->  x  e.  A )  <->  -.  x  e.  ( B 
\  A ) )
54anbi2i 700 . . 3  |-  ( ( x  e.  A  /\  ( x  e.  B  ->  x  e.  A ) )  <->  ( x  e.  A  /\  -.  x  e.  ( B  \  A
) ) )
61, 5bitr2i 254 . 2  |-  ( ( x  e.  A  /\  -.  x  e.  ( B  \  A ) )  <-> 
x  e.  A )
76difeqri 3553 1  |-  ( A 
\  ( B  \  A ) )  =  A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887    \ cdif 3401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431
This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-v 3047  df-dif 3407
This theorem is referenced by:  dif0  3837  undifabs  3844
  Copyright terms: Public domain W3C validator