Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicval2 Structured version   Unicode version

Theorem dicval2 34836
Description: The partial isomorphism C for a lattice  K. (Contributed by NM, 20-Feb-2014.)
Hypotheses
Ref Expression
dicval.l  |-  .<_  =  ( le `  K )
dicval.a  |-  A  =  ( Atoms `  K )
dicval.h  |-  H  =  ( LHyp `  K
)
dicval.p  |-  P  =  ( ( oc `  K ) `  W
)
dicval.t  |-  T  =  ( ( LTrn `  K
) `  W )
dicval.e  |-  E  =  ( ( TEndo `  K
) `  W )
dicval.i  |-  I  =  ( ( DIsoC `  K
) `  W )
dicval2.g  |-  G  =  ( iota_ g  e.  T  ( g `  P
)  =  Q )
Assertion
Ref Expression
dicval2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { <. f ,  s >.  |  ( f  =  ( s `
 G )  /\  s  e.  E ) } )
Distinct variable groups:    f, g,
s, K    T, g    f, W, g, s    f, E, s    P, f    Q, f, g, s    T, f
Allowed substitution hints:    A( f, g, s)    P( g, s)    T( s)    E( g)    G( f, g, s)    H( f, g, s)    I( f, g, s)    .<_ ( f, g, s)    V( f, g, s)

Proof of Theorem dicval2
StepHypRef Expression
1 dicval.l . . 3  |-  .<_  =  ( le `  K )
2 dicval.a . . 3  |-  A  =  ( Atoms `  K )
3 dicval.h . . 3  |-  H  =  ( LHyp `  K
)
4 dicval.p . . 3  |-  P  =  ( ( oc `  K ) `  W
)
5 dicval.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
6 dicval.e . . 3  |-  E  =  ( ( TEndo `  K
) `  W )
7 dicval.i . . 3  |-  I  =  ( ( DIsoC `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dicval 34833 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) } )
9 dicval2.g . . . . . 6  |-  G  =  ( iota_ g  e.  T  ( g `  P
)  =  Q )
109fveq2i 5706 . . . . 5  |-  ( s `
 G )  =  ( s `  ( iota_ g  e.  T  ( g `  P )  =  Q ) )
1110eqeq2i 2453 . . . 4  |-  ( f  =  ( s `  G )  <->  f  =  ( s `  ( iota_ g  e.  T  ( g `  P )  =  Q ) ) )
1211anbi1i 695 . . 3  |-  ( ( f  =  ( s `
 G )  /\  s  e.  E )  <->  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) )
1312opabbii 4368 . 2  |-  { <. f ,  s >.  |  ( f  =  ( s `
 G )  /\  s  e.  E ) }  =  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) }
148, 13syl6eqr 2493 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { <. f ,  s >.  |  ( f  =  ( s `
 G )  /\  s  e.  E ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   class class class wbr 4304   {copab 4361   ` cfv 5430   iota_crio 6063   lecple 14257   occoc 14258   Atomscatm 32920   LHypclh 33640   LTrncltrn 33757   TEndoctendo 34408   DIsoCcdic 34829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-dic 34830
This theorem is referenced by:  dicelval3  34837  diclspsn  34851  dih1dimatlem  34986
  Copyright terms: Public domain W3C validator