Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvaddcl Structured version   Unicode version

Theorem dicvaddcl 35141
Description: Membership in value of the partial isomorphism C is closed under vector sum. (Contributed by NM, 16-Feb-2014.)
Hypotheses
Ref Expression
dicvaddcl.l  |-  .<_  =  ( le `  K )
dicvaddcl.a  |-  A  =  ( Atoms `  K )
dicvaddcl.h  |-  H  =  ( LHyp `  K
)
dicvaddcl.u  |-  U  =  ( ( DVecH `  K
) `  W )
dicvaddcl.i  |-  I  =  ( ( DIsoC `  K
) `  W )
dicvaddcl.p  |-  .+  =  ( +g  `  U )
Assertion
Ref Expression
dicvaddcl  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( X  .+  Y
)  e.  ( I `
 Q ) )

Proof of Theorem dicvaddcl
Dummy variables  g  h  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 988 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 dicvaddcl.l . . . . . . 7  |-  .<_  =  ( le `  K )
3 dicvaddcl.a . . . . . . 7  |-  A  =  ( Atoms `  K )
4 dicvaddcl.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
5 dicvaddcl.i . . . . . . 7  |-  I  =  ( ( DIsoC `  K
) `  W )
6 dicvaddcl.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
7 eqid 2451 . . . . . . 7  |-  ( Base `  U )  =  (
Base `  U )
82, 3, 4, 5, 6, 7dicssdvh 35137 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  C_  ( Base `  U ) )
9 eqid 2451 . . . . . . . . 9  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
10 eqid 2451 . . . . . . . . 9  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
114, 9, 10, 6, 7dvhvbase 35038 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
1211eqcomd 2459 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) )  =  ( Base `  U
) )
1312adantr 465 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) )  =  ( Base `  U
) )
148, 13sseqtr4d 3491 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  C_  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) )
15143adant3 1008 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( I `  Q
)  C_  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) )
16 simp3l 1016 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  ->  X  e.  ( I `  Q ) )
1715, 16sseldd 3455 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  ->  X  e.  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) )
18 simp3r 1017 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  ->  Y  e.  ( I `  Q ) )
1915, 18sseldd 3455 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  ->  Y  e.  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) )
20 eqid 2451 . . . 4  |-  (Scalar `  U )  =  (Scalar `  U )
21 dicvaddcl.p . . . 4  |-  .+  =  ( +g  `  U )
22 eqid 2451 . . . 4  |-  ( +g  `  (Scalar `  U )
)  =  ( +g  `  (Scalar `  U )
)
234, 9, 10, 6, 20, 21, 22dvhvadd 35043 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  ( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) )  /\  Y  e.  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) ) )  ->  ( X  .+  Y )  =  <. ( ( 1st `  X
)  o.  ( 1st `  Y ) ) ,  ( ( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) ) >. )
241, 17, 19, 23syl12anc 1217 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( X  .+  Y
)  =  <. (
( 1st `  X
)  o.  ( 1st `  Y ) ) ,  ( ( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) ) >. )
252, 3, 4, 10, 5dicelval2nd 35140 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  X  e.  ( I `  Q
) )  ->  ( 2nd `  X )  e.  ( ( TEndo `  K
) `  W )
)
26253adant3r 1216 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( 2nd `  X
)  e.  ( (
TEndo `  K ) `  W ) )
272, 3, 4, 10, 5dicelval2nd 35140 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Y  e.  ( I `  Q
) )  ->  ( 2nd `  Y )  e.  ( ( TEndo `  K
) `  W )
)
28273adant3l 1215 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( 2nd `  Y
)  e.  ( (
TEndo `  K ) `  W ) )
29 eqid 2451 . . . . . . . 8  |-  ( oc
`  K )  =  ( oc `  K
)
302, 29, 3, 4lhpocnel 33968 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W )  e.  A  /\  -.  ( ( oc
`  K ) `  W )  .<_  W ) )
31303ad2ant1 1009 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( ( oc
`  K ) `  W )  e.  A  /\  -.  ( ( oc
`  K ) `  W )  .<_  W ) )
32 simp2 989 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
33 eqid 2451 . . . . . . 7  |-  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q )  =  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q )
342, 3, 4, 9, 33ltrniotacl 34529 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( oc `  K ) `
 W )  e.  A  /\  -.  (
( oc `  K
) `  W )  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q )  e.  ( (
LTrn `  K ) `  W ) )
351, 31, 32, 34syl3anc 1219 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q )  e.  ( ( LTrn `  K ) `  W
) )
36 eqid 2451 . . . . . 6  |-  ( s  e.  ( ( TEndo `  K ) `  W
) ,  t  e.  ( ( TEndo `  K
) `  W )  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) )  =  ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) )
379, 36tendospdi2 34973 . . . . 5  |-  ( ( ( 2nd `  X
)  e.  ( (
TEndo `  K ) `  W )  /\  ( 2nd `  Y )  e.  ( ( TEndo `  K
) `  W )  /\  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q )  e.  ( ( LTrn `  K ) `  W
) )  ->  (
( ( 2nd `  X
) ( s  e.  ( ( TEndo `  K
) `  W ) ,  t  e.  (
( TEndo `  K ) `  W )  |->  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  ( ( s `
 h )  o.  ( t `  h
) ) ) ) ( 2nd `  Y
) ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) )  =  ( ( ( 2nd `  X ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) )  o.  ( ( 2nd `  Y
) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) ) )
3826, 28, 35, 37syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( ( 2nd `  X ) ( s  e.  ( ( TEndo `  K ) `  W
) ,  t  e.  ( ( TEndo `  K
) `  W )  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) ) ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) )  =  ( ( ( 2nd `  X
) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) )  o.  ( ( 2nd `  Y ) `
 ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) ) )
394, 9, 10, 6, 20, 36, 22dvhfplusr 35035 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  (Scalar `  U ) )  =  ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) ) )
40393ad2ant1 1009 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( +g  `  (Scalar `  U ) )  =  ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) ) )
4140oveqd 6207 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) )  =  ( ( 2nd `  X ) ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) ) ( 2nd `  Y ) ) )
4241fveq1d 5791 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( ( 2nd `  X ) ( +g  `  (Scalar `  U )
) ( 2nd `  Y
) ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) )  =  ( ( ( 2nd `  X ) ( s  e.  ( ( TEndo `  K ) `  W
) ,  t  e.  ( ( TEndo `  K
) `  W )  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) ) ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) ) )
43 eqid 2451 . . . . . . 7  |-  ( ( oc `  K ) `
 W )  =  ( ( oc `  K ) `  W
)
442, 3, 4, 43, 9, 5dicelval1sta 35138 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  X  e.  ( I `  Q
) )  ->  ( 1st `  X )  =  ( ( 2nd `  X
) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) )
45443adant3r 1216 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( 1st `  X
)  =  ( ( 2nd `  X ) `
 ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) )
462, 3, 4, 43, 9, 5dicelval1sta 35138 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Y  e.  ( I `  Q
) )  ->  ( 1st `  Y )  =  ( ( 2nd `  Y
) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) )
47463adant3l 1215 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) )
4845, 47coeq12d 5102 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( 1st `  X
)  o.  ( 1st `  Y ) )  =  ( ( ( 2nd `  X ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) )  o.  ( ( 2nd `  Y
) `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q ) ) ) )
4938, 42, 483eqtr4rd 2503 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( 1st `  X
)  o.  ( 1st `  Y ) )  =  ( ( ( 2nd `  X ) ( +g  `  (Scalar `  U )
) ( 2nd `  Y
) ) `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q ) ) )
504, 9, 10, 36tendoplcl 34731 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( 2nd `  X
)  e.  ( (
TEndo `  K ) `  W )  /\  ( 2nd `  Y )  e.  ( ( TEndo `  K
) `  W )
)  ->  ( ( 2nd `  X ) ( s  e.  ( (
TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( s `  h )  o.  (
t `  h )
) ) ) ( 2nd `  Y ) )  e.  ( (
TEndo `  K ) `  W ) )
511, 26, 28, 50syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( 2nd `  X
) ( s  e.  ( ( TEndo `  K
) `  W ) ,  t  e.  (
( TEndo `  K ) `  W )  |->  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  ( ( s `
 h )  o.  ( t `  h
) ) ) ) ( 2nd `  Y
) )  e.  ( ( TEndo `  K ) `  W ) )
5241, 51eqeltrd 2539 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( ( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) )  e.  ( (
TEndo `  K ) `  W ) )
53 fvex 5799 . . . . . 6  |-  ( 1st `  X )  e.  _V
54 fvex 5799 . . . . . 6  |-  ( 1st `  Y )  e.  _V
5553, 54coex 6629 . . . . 5  |-  ( ( 1st `  X )  o.  ( 1st `  Y
) )  e.  _V
56 ovex 6215 . . . . 5  |-  ( ( 2nd `  X ) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) )  e.  _V
572, 3, 4, 43, 9, 10, 5, 55, 56dicopelval 35128 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. ( ( 1st `  X )  o.  ( 1st `  Y ) ) ,  ( ( 2nd `  X ) ( +g  `  (Scalar `  U )
) ( 2nd `  Y
) ) >.  e.  ( I `  Q )  <-> 
( ( ( 1st `  X )  o.  ( 1st `  Y ) )  =  ( ( ( 2nd `  X ) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) )  /\  (
( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) )  e.  ( (
TEndo `  K ) `  W ) ) ) )
58573adant3 1008 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( <. ( ( 1st `  X )  o.  ( 1st `  Y ) ) ,  ( ( 2nd `  X ) ( +g  `  (Scalar `  U )
) ( 2nd `  Y
) ) >.  e.  ( I `  Q )  <-> 
( ( ( 1st `  X )  o.  ( 1st `  Y ) )  =  ( ( ( 2nd `  X ) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) )  /\  (
( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) )  e.  ( (
TEndo `  K ) `  W ) ) ) )
5949, 52, 58mpbir2and 913 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  ->  <. ( ( 1st `  X
)  o.  ( 1st `  Y ) ) ,  ( ( 2nd `  X
) ( +g  `  (Scalar `  U ) ) ( 2nd `  Y ) ) >.  e.  (
I `  Q )
)
6024, 59eqeltrd 2539 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q
) ) )  -> 
( X  .+  Y
)  e.  ( I `
 Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    C_ wss 3426   <.cop 3981   class class class wbr 4390    |-> cmpt 4448    X. cxp 4936    o. ccom 4942   ` cfv 5516   iota_crio 6150  (class class class)co 6190    |-> cmpt2 6192   1stc1st 6675   2ndc2nd 6676   Basecbs 14276   +g cplusg 14340  Scalarcsca 14343   lecple 14347   occoc 14348   Atomscatm 33214   HLchlt 33301   LHypclh 33934   LTrncltrn 34051   TEndoctendo 34702   DVecHcdvh 35029   DIsoCcdic 35123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-riotaBAD 32910
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-iin 4272  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-undef 6892  df-recs 6932  df-rdg 6966  df-1o 7020  df-oadd 7024  df-er 7201  df-map 7316  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-nn 10424  df-2 10481  df-3 10482  df-4 10483  df-5 10484  df-6 10485  df-n0 10681  df-z 10748  df-uz 10963  df-fz 11539  df-struct 14278  df-ndx 14279  df-slot 14280  df-base 14281  df-plusg 14353  df-mulr 14354  df-sca 14356  df-vsca 14357  df-poset 15218  df-plt 15230  df-lub 15246  df-glb 15247  df-join 15248  df-meet 15249  df-p0 15311  df-p1 15312  df-lat 15318  df-clat 15380  df-oposet 33127  df-ol 33129  df-oml 33130  df-covers 33217  df-ats 33218  df-atl 33249  df-cvlat 33273  df-hlat 33302  df-llines 33448  df-lplanes 33449  df-lvols 33450  df-lines 33451  df-psubsp 33453  df-pmap 33454  df-padd 33746  df-lhyp 33938  df-laut 33939  df-ldil 34054  df-ltrn 34055  df-trl 34109  df-tendo 34705  df-edring 34707  df-dvech 35030  df-dic 35124
This theorem is referenced by:  diclss  35144
  Copyright terms: Public domain W3C validator