Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicopelval Structured version   Unicode version

Theorem dicopelval 34827
Description: Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 15-Feb-2014.)
Hypotheses
Ref Expression
dicval.l  |-  .<_  =  ( le `  K )
dicval.a  |-  A  =  ( Atoms `  K )
dicval.h  |-  H  =  ( LHyp `  K
)
dicval.p  |-  P  =  ( ( oc `  K ) `  W
)
dicval.t  |-  T  =  ( ( LTrn `  K
) `  W )
dicval.e  |-  E  =  ( ( TEndo `  K
) `  W )
dicval.i  |-  I  =  ( ( DIsoC `  K
) `  W )
dicelval.f  |-  F  e. 
_V
dicelval.s  |-  S  e. 
_V
Assertion
Ref Expression
dicopelval  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. F ,  S >.  e.  ( I `  Q )  <->  ( F  =  ( S `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  /\  S  e.  E ) ) )
Distinct variable groups:    g, K    T, g    g, W    Q, g
Allowed substitution hints:    A( g)    P( g)    S( g)    E( g)    F( g)    H( g)    I(
g)    .<_ ( g)    V( g)

Proof of Theorem dicopelval
Dummy variables  f 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4  |-  .<_  =  ( le `  K )
2 dicval.a . . . 4  |-  A  =  ( Atoms `  K )
3 dicval.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dicval.p . . . 4  |-  P  =  ( ( oc `  K ) `  W
)
5 dicval.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
6 dicval.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
7 dicval.i . . . 4  |-  I  =  ( ( DIsoC `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dicval 34826 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) } )
98eleq2d 2510 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. F ,  S >.  e.  ( I `  Q )  <->  <. F ,  S >.  e.  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) } ) )
10 dicelval.f . . 3  |-  F  e. 
_V
11 dicelval.s . . 3  |-  S  e. 
_V
12 eqeq1 2449 . . . 4  |-  ( f  =  F  ->  (
f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  <->  F  =  ( s `  ( iota_ g  e.  T  ( g `  P )  =  Q ) ) ) )
1312anbi1d 704 . . 3  |-  ( f  =  F  ->  (
( f  =  ( s `  ( iota_ g  e.  T  ( g `
 P )  =  Q ) )  /\  s  e.  E )  <->  ( F  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) ) )
14 fveq1 5695 . . . . 5  |-  ( s  =  S  ->  (
s `  ( iota_ g  e.  T  ( g `  P )  =  Q ) )  =  ( S `  ( iota_ g  e.  T  ( g `
 P )  =  Q ) ) )
1514eqeq2d 2454 . . . 4  |-  ( s  =  S  ->  ( F  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  <->  F  =  ( S `  ( iota_ g  e.  T  ( g `  P )  =  Q ) ) ) )
16 eleq1 2503 . . . 4  |-  ( s  =  S  ->  (
s  e.  E  <->  S  e.  E ) )
1715, 16anbi12d 710 . . 3  |-  ( s  =  S  ->  (
( F  =  ( s `  ( iota_ g  e.  T  ( g `
 P )  =  Q ) )  /\  s  e.  E )  <->  ( F  =  ( S `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  S  e.  E ) ) )
1810, 11, 13, 17opelopab 4615 . 2  |-  ( <. F ,  S >.  e. 
{ <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  /\  s  e.  E ) }  <->  ( F  =  ( S `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  /\  S  e.  E ) )
199, 18syl6bb 261 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. F ,  S >.  e.  ( I `  Q )  <->  ( F  =  ( S `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  /\  S  e.  E ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2977   <.cop 3888   class class class wbr 4297   {copab 4354   ` cfv 5423   iota_crio 6056   lecple 14250   occoc 14251   Atomscatm 32913   LHypclh 33633   LTrncltrn 33750   TEndoctendo 34401   DIsoCcdic 34822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-dic 34823
This theorem is referenced by:  dicopelval2  34831  dicvaddcl  34840  dicvscacl  34841  dicn0  34842
  Copyright terms: Public domain W3C validator