Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diclspsn Structured version   Unicode version

Theorem diclspsn 36796
Description: The value of isomorphism C is spanned by vector  F. Part of proof of Lemma N of [Crawley] p. 121 line 29. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
diclspsn.l  |-  .<_  =  ( le `  K )
diclspsn.a  |-  A  =  ( Atoms `  K )
diclspsn.h  |-  H  =  ( LHyp `  K
)
diclspsn.p  |-  P  =  ( ( oc `  K ) `  W
)
diclspsn.t  |-  T  =  ( ( LTrn `  K
) `  W )
diclspsn.i  |-  I  =  ( ( DIsoC `  K
) `  W )
diclspsn.u  |-  U  =  ( ( DVecH `  K
) `  W )
diclspsn.n  |-  N  =  ( LSpan `  U )
diclspsn.f  |-  F  =  ( iota_ f  e.  T  ( f `  P
)  =  Q )
Assertion
Ref Expression
diclspsn  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  ( N `
 { <. F , 
(  _I  |`  T )
>. } ) )
Distinct variable groups:    .<_ , f    P, f    A, f    f, H    T, f    f, K    Q, f    f, W
Allowed substitution hints:    U( f)    F( f)    I( f)    N( f)

Proof of Theorem diclspsn
Dummy variables  g 
s  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2802 . . 3  |-  { v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) }  =  { v  |  ( v  e.  ( T  X.  (
( TEndo `  K ) `  W ) )  /\  E. x  e.  ( Base `  (Scalar `  U )
) v  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) }
2 relopab 5119 . . . . 5  |-  Rel  { <. y ,  z >.  |  ( y  =  ( z `  F
)  /\  z  e.  ( ( TEndo `  K
) `  W )
) }
3 diclspsn.l . . . . . . 7  |-  .<_  =  ( le `  K )
4 diclspsn.a . . . . . . 7  |-  A  =  ( Atoms `  K )
5 diclspsn.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
6 diclspsn.p . . . . . . 7  |-  P  =  ( ( oc `  K ) `  W
)
7 diclspsn.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
8 eqid 2443 . . . . . . 7  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
9 diclspsn.i . . . . . . 7  |-  I  =  ( ( DIsoC `  K
) `  W )
10 diclspsn.f . . . . . . 7  |-  F  =  ( iota_ f  e.  T  ( f `  P
)  =  Q )
113, 4, 5, 6, 7, 8, 9, 10dicval2 36781 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { <. y ,  z >.  |  ( y  =  ( z `
 F )  /\  z  e.  ( ( TEndo `  K ) `  W ) ) } )
1211releqd 5077 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Rel  ( I `  Q )  <->  Rel  { <. y ,  z >.  |  ( y  =  ( z `
 F )  /\  z  e.  ( ( TEndo `  K ) `  W ) ) } ) )
132, 12mpbiri 233 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  Rel  ( I `  Q
) )
14 ssrab2 3570 . . . . . 6  |-  { v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) }  C_  ( T  X.  ( ( TEndo `  K
) `  W )
)
15 relxp 5100 . . . . . 6  |-  Rel  ( T  X.  ( ( TEndo `  K ) `  W
) )
16 relss 5080 . . . . . 6  |-  ( { v  e.  ( T  X.  ( ( TEndo `  K ) `  W
) )  |  E. x  e.  ( Base `  (Scalar `  U )
) v  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) }  C_  ( T  X.  ( ( TEndo `  K ) `  W
) )  ->  ( Rel  ( T  X.  (
( TEndo `  K ) `  W ) )  ->  Rel  { v  e.  ( T  X.  ( (
TEndo `  K ) `  W ) )  |  E. x  e.  (
Base `  (Scalar `  U
) ) v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. ) } ) )
1714, 15, 16mp2 9 . . . . 5  |-  Rel  {
v  e.  ( T  X.  ( ( TEndo `  K ) `  W
) )  |  E. x  e.  ( Base `  (Scalar `  U )
) v  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) }
1817a1i 11 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  Rel  { v  e.  ( T  X.  ( (
TEndo `  K ) `  W ) )  |  E. x  e.  (
Base `  (Scalar `  U
) ) v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. ) } )
19 id 22 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
20 vex 3098 . . . . . . 7  |-  g  e. 
_V
21 vex 3098 . . . . . . 7  |-  s  e. 
_V
223, 4, 5, 6, 7, 8, 9, 10, 20, 21dicopelval2 36783 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. g ,  s
>.  e.  ( I `  Q )  <->  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) ) )
23 simprl 756 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  g  =  ( s `  F ) )
24 simpll 753 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
25 simprr 757 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  s  e.  ( ( TEndo `  K
) `  W )
)
26 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
273, 4, 5, 6lhpocnel2 35618 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
2827adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
29 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
303, 4, 5, 7, 10ltrniotacl 36180 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
3126, 28, 29, 30syl3anc 1229 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
3231adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  F  e.  T )
335, 7, 8tendocl 36368 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  F  e.  T )  ->  (
s `  F )  e.  T )
3424, 25, 32, 33syl3anc 1229 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  (
s `  F )  e.  T )
3523, 34eqeltrd 2531 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  g  e.  T )
3635, 25, 233jca 1177 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  =  ( s `  F )  /\  s  e.  ( ( TEndo `  K
) `  W )
) )  ->  (
g  e.  T  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  g  =  ( s `  F ) ) )
37 simpr3 1005 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  g  =  (
s `  F )
) )  ->  g  =  ( s `  F ) )
38 simpr2 1004 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  g  =  (
s `  F )
) )  ->  s  e.  ( ( TEndo `  K
) `  W )
)
3937, 38jca 532 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  g  =  (
s `  F )
) )  ->  (
g  =  ( s `
 F )  /\  s  e.  ( ( TEndo `  K ) `  W ) ) )
4036, 39impbida 832 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( g  =  ( s `  F
)  /\  s  e.  ( ( TEndo `  K
) `  W )
)  <->  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  g  =  (
s `  F )
) ) )
41 diclspsn.u . . . . . . . . . . . . . 14  |-  U  =  ( ( DVecH `  K
) `  W )
42 eqid 2443 . . . . . . . . . . . . . 14  |-  (Scalar `  U )  =  (Scalar `  U )
43 eqid 2443 . . . . . . . . . . . . . 14  |-  ( Base `  (Scalar `  U )
)  =  ( Base `  (Scalar `  U )
)
445, 8, 41, 42, 43dvhbase 36685 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  (Scalar `  U ) )  =  ( ( TEndo `  K
) `  W )
)
4544adantr 465 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Base `  (Scalar `  U
) )  =  ( ( TEndo `  K ) `  W ) )
4645rexeqdv 3047 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( E. x  e.  ( Base `  (Scalar `  U ) ) <.
g ,  s >.  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  <->  E. x  e.  ( (
TEndo `  K ) `  W ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) )
47 simpll 753 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( K  e.  HL  /\  W  e.  H ) )
48 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  x  e.  ( ( TEndo `  K
) `  W )
)
4931adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  F  e.  T )
505, 7, 8tendoidcl 36370 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W
) )
5150ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W ) )
52 eqid 2443 . . . . . . . . . . . . . . . . . 18  |-  ( .s
`  U )  =  ( .s `  U
)
535, 7, 8, 41, 52dvhopvsca 36704 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  F  e.  T  /\  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W
) ) )  -> 
( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. )  =  <. ( x `  F ) ,  ( x  o.  (  _I  |`  T ) ) >.
)
5447, 48, 49, 51, 53syl13anc 1231 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( x
( .s `  U
) <. F ,  (  _I  |`  T ) >. )  =  <. (
x `  F ) ,  ( x  o.  (  _I  |`  T ) ) >. )
5554eqeq2d 2457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. )  <->  <. g ,  s
>.  =  <. ( x `
 F ) ,  ( x  o.  (  _I  |`  T ) )
>. ) )
5620, 21opth 4711 . . . . . . . . . . . . . . 15  |-  ( <.
g ,  s >.  =  <. ( x `  F ) ,  ( x  o.  (  _I  |`  T ) ) >.  <->  ( g  =  ( x `
 F )  /\  s  =  ( x  o.  (  _I  |`  T ) ) ) )
5755, 56syl6bb 261 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. )  <->  ( g  =  ( x `  F
)  /\  s  =  ( x  o.  (  _I  |`  T ) ) ) ) )
585, 7, 8tendo1mulr 36372 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  x  e.  ( ( TEndo `  K ) `  W ) )  -> 
( x  o.  (  _I  |`  T ) )  =  x )
5958adantlr 714 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( x  o.  (  _I  |`  T ) )  =  x )
6059eqeq2d 2457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( s  =  ( x  o.  (  _I  |`  T ) )  <->  s  =  x ) )
61 equcom 1780 . . . . . . . . . . . . . . . 16  |-  ( s  =  x  <->  x  =  s )
6260, 61syl6bb 261 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( s  =  ( x  o.  (  _I  |`  T ) )  <->  x  =  s
) )
6362anbi2d 703 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( (
g  =  ( x `
 F )  /\  s  =  ( x  o.  (  _I  |`  T ) ) )  <->  ( g  =  ( x `  F )  /\  x  =  s ) ) )
6457, 63bitrd 253 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. )  <->  ( g  =  ( x `  F
)  /\  x  =  s ) ) )
65 ancom 450 . . . . . . . . . . . . 13  |-  ( ( g  =  ( x `
 F )  /\  x  =  s )  <->  ( x  =  s  /\  g  =  ( x `  F ) ) )
6664, 65syl6bb 261 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( ( TEndo `  K
) `  W )
)  ->  ( <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. )  <->  ( x  =  s  /\  g  =  ( x `  F
) ) ) )
6766rexbidva 2951 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( E. x  e.  ( ( TEndo `  K
) `  W ) <. g ,  s >.  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  <->  E. x  e.  ( (
TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) ) )
6846, 67bitrd 253 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( E. x  e.  ( Base `  (Scalar `  U ) ) <.
g ,  s >.  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  <->  E. x  e.  ( (
TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) ) )
69683anbi3d 1306 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  (
Base `  (Scalar `  U
) ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) )  <->  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) ) ) )
70 fveq1 5855 . . . . . . . . . . . . . 14  |-  ( x  =  s  ->  (
x `  F )  =  ( s `  F ) )
7170eqeq2d 2457 . . . . . . . . . . . . 13  |-  ( x  =  s  ->  (
g  =  ( x `
 F )  <->  g  =  ( s `  F
) ) )
7271ceqsrexv 3219 . . . . . . . . . . . 12  |-  ( s  e.  ( ( TEndo `  K ) `  W
)  ->  ( E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) )  <->  g  =  ( s `  F
) ) )
7372pm5.32i 637 . . . . . . . . . . 11  |-  ( ( s  e.  ( (
TEndo `  K ) `  W )  /\  E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) )  <-> 
( s  e.  ( ( TEndo `  K ) `  W )  /\  g  =  ( s `  F ) ) )
7473anbi2i 694 . . . . . . . . . 10  |-  ( ( g  e.  T  /\  ( s  e.  ( ( TEndo `  K ) `  W )  /\  E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) ) )  <->  ( g  e.  T  /\  ( s  e.  ( ( TEndo `  K ) `  W
)  /\  g  =  ( s `  F
) ) ) )
75 3anass 978 . . . . . . . . . 10  |-  ( ( g  e.  T  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) )  <-> 
( g  e.  T  /\  ( s  e.  ( ( TEndo `  K ) `  W )  /\  E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) ) ) )
76 3anass 978 . . . . . . . . . 10  |-  ( ( g  e.  T  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  g  =  ( s `  F ) )  <->  ( g  e.  T  /\  (
s  e.  ( (
TEndo `  K ) `  W )  /\  g  =  ( s `  F ) ) ) )
7774, 75, 763bitr4i 277 . . . . . . . . 9  |-  ( ( g  e.  T  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  E. x  e.  ( ( TEndo `  K ) `  W ) ( x  =  s  /\  g  =  ( x `  F ) ) )  <-> 
( g  e.  T  /\  s  e.  (
( TEndo `  K ) `  W )  /\  g  =  ( s `  F ) ) )
7869, 77syl6rbb 262 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  g  =  (
s `  F )
)  <->  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  (
Base `  (Scalar `  U
) ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) ) )
7940, 78bitrd 253 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( g  =  ( s `  F
)  /\  s  e.  ( ( TEndo `  K
) `  W )
)  <->  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  (
Base `  (Scalar `  U
) ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) ) )
80 eqeq1 2447 . . . . . . . . . . 11  |-  ( v  =  <. g ,  s
>.  ->  ( v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. )  <->  <.
g ,  s >.  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )
) )
8180rexbidv 2954 . . . . . . . . . 10  |-  ( v  =  <. g ,  s
>.  ->  ( E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  <->  E. x  e.  ( Base `  (Scalar `  U )
) <. g ,  s
>.  =  ( x
( .s `  U
) <. F ,  (  _I  |`  T ) >. ) ) )
8281rabxp 5026 . . . . . . . . 9  |-  { v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) }  =  { <. g ,  s >.  |  ( g  e.  T  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  E. x  e.  ( Base `  (Scalar `  U )
) <. g ,  s
>.  =  ( x
( .s `  U
) <. F ,  (  _I  |`  T ) >. ) ) }
8382eleq2i 2521 . . . . . . . 8  |-  ( <.
g ,  s >.  e.  { v  e.  ( T  X.  ( (
TEndo `  K ) `  W ) )  |  E. x  e.  (
Base `  (Scalar `  U
) ) v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. ) } 
<-> 
<. g ,  s >.  e.  { <. g ,  s
>.  |  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  (
Base `  (Scalar `  U
) ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) } )
84 opabid 4744 . . . . . . . 8  |-  ( <.
g ,  s >.  e.  { <. g ,  s
>.  |  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  (
Base `  (Scalar `  U
) ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) }  <->  ( g  e.  T  /\  s  e.  ( ( TEndo `  K
) `  W )  /\  E. x  e.  (
Base `  (Scalar `  U
) ) <. g ,  s >.  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) )
8583, 84bitr2i 250 . . . . . . 7  |-  ( ( g  e.  T  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  E. x  e.  ( Base `  (Scalar `  U )
) <. g ,  s
>.  =  ( x
( .s `  U
) <. F ,  (  _I  |`  T ) >. ) )  <->  <. g ,  s >.  e.  { v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) } )
8679, 85syl6bb 261 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( g  =  ( s `  F
)  /\  s  e.  ( ( TEndo `  K
) `  W )
)  <->  <. g ,  s
>.  e.  { v  e.  ( T  X.  (
( TEndo `  K ) `  W ) )  |  E. x  e.  (
Base `  (Scalar `  U
) ) v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. ) } ) )
8722, 86bitrd 253 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. g ,  s
>.  e.  ( I `  Q )  <->  <. g ,  s >.  e.  { v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) } ) )
8887eqrelrdv2 5092 . . . 4  |-  ( ( ( Rel  ( I `
 Q )  /\  Rel  { v  e.  ( T  X.  ( (
TEndo `  K ) `  W ) )  |  E. x  e.  (
Base `  (Scalar `  U
) ) v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. ) } )  /\  (
( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( I `  Q )  =  {
v  e.  ( T  X.  ( ( TEndo `  K ) `  W
) )  |  E. x  e.  ( Base `  (Scalar `  U )
) v  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) } )
8913, 18, 19, 88syl21anc 1228 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) } )
90 simpll 753 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( Base `  (Scalar `  U ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
9145eleq2d 2513 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( x  e.  (
Base `  (Scalar `  U
) )  <->  x  e.  ( ( TEndo `  K
) `  W )
) )
9291biimpa 484 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( Base `  (Scalar `  U ) ) )  ->  x  e.  ( ( TEndo `  K ) `  W ) )
9350adantr 465 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
(  _I  |`  T )  e.  ( ( TEndo `  K ) `  W
) )
94 opelxpi 5021 . . . . . . . . . 10  |-  ( ( F  e.  T  /\  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W
) )  ->  <. F , 
(  _I  |`  T )
>.  e.  ( T  X.  ( ( TEndo `  K
) `  W )
) )
9531, 93, 94syl2anc 661 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  <. F ,  (  _I  |`  T ) >.  e.  ( T  X.  ( (
TEndo `  K ) `  W ) ) )
9695adantr 465 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( Base `  (Scalar `  U ) ) )  ->  <. F ,  (  _I  |`  T ) >.  e.  ( T  X.  ( ( TEndo `  K
) `  W )
) )
975, 7, 8, 41, 52dvhvscacl 36705 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  <. F ,  (  _I  |`  T ) >.  e.  ( T  X.  ( ( TEndo `  K
) `  W )
) ) )  -> 
( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. )  e.  ( T  X.  (
( TEndo `  K ) `  W ) ) )
9890, 92, 96, 97syl12anc 1227 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( Base `  (Scalar `  U ) ) )  ->  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  e.  ( T  X.  (
( TEndo `  K ) `  W ) ) )
99 eleq1a 2526 . . . . . . 7  |-  ( ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. )  e.  ( T  X.  ( ( TEndo `  K ) `  W
) )  ->  (
v  =  ( x ( .s `  U
) <. F ,  (  _I  |`  T ) >. )  ->  v  e.  ( T  X.  (
( TEndo `  K ) `  W ) ) ) )
10098, 99syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  x  e.  ( Base `  (Scalar `  U ) ) )  ->  ( v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. )  ->  v  e.  ( T  X.  ( ( TEndo `  K ) `  W
) ) ) )
101100rexlimdva 2935 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  ->  v  e.  ( T  X.  ( ( TEndo `  K ) `  W
) ) ) )
102101pm4.71rd 635 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )  <->  ( v  e.  ( T  X.  ( ( TEndo `  K ) `  W
) )  /\  E. x  e.  ( Base `  (Scalar `  U )
) v  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) ) ) )
103102abbidv 2579 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  { v  |  E. x  e.  ( Base `  (Scalar `  U )
) v  =  ( x ( .s `  U ) <. F , 
(  _I  |`  T )
>. ) }  =  {
v  |  ( v  e.  ( T  X.  ( ( TEndo `  K
) `  W )
)  /\  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. )
) } )
1041, 89, 1033eqtr4a 2510 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { v  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) } )
1055, 41, 26dvhlmod 36712 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  U  e.  LMod )
106 eqid 2443 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
1075, 7, 8, 41, 106dvhelvbasei 36690 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W ) ) )  ->  <. F ,  (  _I  |`  T ) >.  e.  ( Base `  U
) )
10826, 31, 93, 107syl12anc 1227 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  <. F ,  (  _I  |`  T ) >.  e.  (
Base `  U )
)
109 diclspsn.n . . . 4  |-  N  =  ( LSpan `  U )
11042, 43, 106, 52, 109lspsn 17627 . . 3  |-  ( ( U  e.  LMod  /\  <. F ,  (  _I  |`  T )
>.  e.  ( Base `  U
) )  ->  ( N `  { <. F , 
(  _I  |`  T )
>. } )  =  {
v  |  E. x  e.  ( Base `  (Scalar `  U ) ) v  =  ( x ( .s `  U )
<. F ,  (  _I  |`  T ) >. ) } )
111105, 108, 110syl2anc 661 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( N `  { <. F ,  (  _I  |`  T ) >. } )  =  { v  |  E. x  e.  (
Base `  (Scalar `  U
) ) v  =  ( x ( .s
`  U ) <. F ,  (  _I  |`  T ) >. ) } )
112104, 111eqtr4d 2487 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  ( N `
 { <. F , 
(  _I  |`  T )
>. } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   {cab 2428   E.wrex 2794   {crab 2797    C_ wss 3461   {csn 4014   <.cop 4020   class class class wbr 4437   {copab 4494    _I cid 4780    X. cxp 4987    |` cres 4991    o. ccom 4993   Rel wrel 4994   ` cfv 5578   iota_crio 6241  (class class class)co 6281   Basecbs 14614  Scalarcsca 14682   .scvsca 14683   lecple 14686   occoc 14687   LModclmod 17491   LSpanclspn 17596   Atomscatm 34863   HLchlt 34950   LHypclh 35583   LTrncltrn 35700   TEndoctendo 36353   DVecHcdvh 36680   DIsoCcdic 36774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-riotaBAD 34559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-tpos 6957  df-undef 7004  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-n0 10803  df-z 10872  df-uz 11093  df-fz 11684  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-sca 14695  df-vsca 14696  df-0g 14821  df-preset 15536  df-poset 15554  df-plt 15567  df-lub 15583  df-glb 15584  df-join 15585  df-meet 15586  df-p0 15648  df-p1 15649  df-lat 15655  df-clat 15717  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-grp 16036  df-minusg 16037  df-sbg 16038  df-mgp 17121  df-ur 17133  df-ring 17179  df-oppr 17251  df-dvdsr 17269  df-unit 17270  df-invr 17300  df-dvr 17311  df-drng 17377  df-lmod 17493  df-lss 17558  df-lsp 17597  df-lvec 17728  df-oposet 34776  df-ol 34778  df-oml 34779  df-covers 34866  df-ats 34867  df-atl 34898  df-cvlat 34922  df-hlat 34951  df-llines 35097  df-lplanes 35098  df-lvols 35099  df-lines 35100  df-psubsp 35102  df-pmap 35103  df-padd 35395  df-lhyp 35587  df-laut 35588  df-ldil 35703  df-ltrn 35704  df-trl 35759  df-tendo 36356  df-edring 36358  df-dvech 36681  df-dic 36775
This theorem is referenced by:  cdlemn5pre  36802  dih1dimc  36844
  Copyright terms: Public domain W3C validator