Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicfval Structured version   Unicode version

Theorem dicfval 34195
Description: The partial isomorphism C for a lattice  K. (Contributed by NM, 15-Dec-2013.)
Hypotheses
Ref Expression
dicval.l  |-  .<_  =  ( le `  K )
dicval.a  |-  A  =  ( Atoms `  K )
dicval.h  |-  H  =  ( LHyp `  K
)
dicval.p  |-  P  =  ( ( oc `  K ) `  W
)
dicval.t  |-  T  =  ( ( LTrn `  K
) `  W )
dicval.e  |-  E  =  ( ( TEndo `  K
) `  W )
dicval.i  |-  I  =  ( ( DIsoC `  K
) `  W )
Assertion
Ref Expression
dicfval  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E ) } ) )
Distinct variable groups:    A, r    f, g, q, r, s, K    .<_ , q    A, q    T, g    f, W, g, q, r, s
Allowed substitution hints:    A( f, g, s)    P( f, g, s, r, q)    T( f, s, r, q)    E( f, g, s, r, q)    H( f, g, s, r, q)    I( f, g, s, r, q)    .<_ ( f, g, s, r)    V( f, g, s, r, q)

Proof of Theorem dicfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dicval.i . . 3  |-  I  =  ( ( DIsoC `  K
) `  W )
2 dicval.l . . . . 5  |-  .<_  =  ( le `  K )
3 dicval.a . . . . 5  |-  A  =  ( Atoms `  K )
4 dicval.h . . . . 5  |-  H  =  ( LHyp `  K
)
52, 3, 4dicffval 34194 . . . 4  |-  ( K  e.  V  ->  ( DIsoC `  K )  =  ( w  e.  H  |->  ( q  e.  {
r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) } ) ) )
65fveq1d 5851 . . 3  |-  ( K  e.  V  ->  (
( DIsoC `  K ) `  W )  =  ( ( w  e.  H  |->  ( q  e.  {
r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) } ) ) `
 W ) )
71, 6syl5eq 2455 . 2  |-  ( K  e.  V  ->  I  =  ( ( w  e.  H  |->  ( q  e.  { r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) } ) ) `
 W ) )
8 breq2 4399 . . . . . 6  |-  ( w  =  W  ->  (
r  .<_  w  <->  r  .<_  W ) )
98notbid 292 . . . . 5  |-  ( w  =  W  ->  ( -.  r  .<_  w  <->  -.  r  .<_  W ) )
109rabbidv 3051 . . . 4  |-  ( w  =  W  ->  { r  e.  A  |  -.  r  .<_  w }  =  { r  e.  A  |  -.  r  .<_  W }
)
11 fveq2 5849 . . . . . . . . . 10  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  ( ( LTrn `  K
) `  W )
)
12 dicval.t . . . . . . . . . 10  |-  T  =  ( ( LTrn `  K
) `  W )
1311, 12syl6eqr 2461 . . . . . . . . 9  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  T )
14 fveq2 5849 . . . . . . . . . . . 12  |-  ( w  =  W  ->  (
( oc `  K
) `  w )  =  ( ( oc
`  K ) `  W ) )
15 dicval.p . . . . . . . . . . . 12  |-  P  =  ( ( oc `  K ) `  W
)
1614, 15syl6eqr 2461 . . . . . . . . . . 11  |-  ( w  =  W  ->  (
( oc `  K
) `  w )  =  P )
1716fveq2d 5853 . . . . . . . . . 10  |-  ( w  =  W  ->  (
g `  ( ( oc `  K ) `  w ) )  =  ( g `  P
) )
1817eqeq1d 2404 . . . . . . . . 9  |-  ( w  =  W  ->  (
( g `  (
( oc `  K
) `  w )
)  =  q  <->  ( g `  P )  =  q ) )
1913, 18riotaeqbidv 6243 . . . . . . . 8  |-  ( w  =  W  ->  ( iota_ g  e.  ( (
LTrn `  K ) `  w ) ( g `
 ( ( oc
`  K ) `  w ) )  =  q )  =  (
iota_ g  e.  T  ( g `  P
)  =  q ) )
2019fveq2d 5853 . . . . . . 7  |-  ( w  =  W  ->  (
s `  ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) ) )
2120eqeq2d 2416 . . . . . 6  |-  ( w  =  W  ->  (
f  =  ( s `
 ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  <->  f  =  ( s `  ( iota_ g  e.  T  ( g `
 P )  =  q ) ) ) )
22 fveq2 5849 . . . . . . . 8  |-  ( w  =  W  ->  (
( TEndo `  K ) `  w )  =  ( ( TEndo `  K ) `  W ) )
23 dicval.e . . . . . . . 8  |-  E  =  ( ( TEndo `  K
) `  W )
2422, 23syl6eqr 2461 . . . . . . 7  |-  ( w  =  W  ->  (
( TEndo `  K ) `  w )  =  E )
2524eleq2d 2472 . . . . . 6  |-  ( w  =  W  ->  (
s  e.  ( (
TEndo `  K ) `  w )  <->  s  e.  E ) )
2621, 25anbi12d 709 . . . . 5  |-  ( w  =  W  ->  (
( f  =  ( s `  ( iota_ g  e.  ( ( LTrn `  K ) `  w
) ( g `  ( ( oc `  K ) `  w
) )  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
)  <->  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E
) ) )
2726opabbidv 4458 . . . 4  |-  ( w  =  W  ->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) }  =  { <. f ,  s >.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E
) } )
2810, 27mpteq12dv 4473 . . 3  |-  ( w  =  W  ->  (
q  e.  { r  e.  A  |  -.  r  .<_  w }  |->  {
<. f ,  s >.  |  ( f  =  ( s `  ( iota_ g  e.  ( (
LTrn `  K ) `  w ) ( g `
 ( ( oc
`  K ) `  w ) )  =  q ) )  /\  s  e.  ( ( TEndo `  K ) `  w ) ) } )  =  ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E ) } ) )
29 eqid 2402 . . 3  |-  ( w  e.  H  |->  ( q  e.  { r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) } ) )  =  ( w  e.  H  |->  ( q  e. 
{ r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) } ) )
30 fvex 5859 . . . . 5  |-  ( Atoms `  K )  e.  _V
313, 30eqeltri 2486 . . . 4  |-  A  e. 
_V
3231mptrabex 6125 . . 3  |-  ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E ) } )  e.  _V
3328, 29, 32fvmpt 5932 . 2  |-  ( W  e.  H  ->  (
( w  e.  H  |->  ( q  e.  {
r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) } ) ) `
 W )  =  ( q  e.  {
r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  q ) )  /\  s  e.  E ) } ) )
347, 33sylan9eq 2463 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E ) } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   {crab 2758   _Vcvv 3059   class class class wbr 4395   {copab 4452    |-> cmpt 4453   ` cfv 5569   iota_crio 6239   lecple 14916   occoc 14917   Atomscatm 32281   LHypclh 33001   LTrncltrn 33118   TEndoctendo 33771   DIsoCcdic 34192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-dic 34193
This theorem is referenced by:  dicval  34196  dicfnN  34203
  Copyright terms: Public domain W3C validator