Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicfnN Structured version   Unicode version

Theorem dicfnN 37326
Description: Functionality and domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicfn.l  |-  .<_  =  ( le `  K )
dicfn.a  |-  A  =  ( Atoms `  K )
dicfn.h  |-  H  =  ( LHyp `  K
)
dicfn.i  |-  I  =  ( ( DIsoC `  K
) `  W )
Assertion
Ref Expression
dicfnN  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  Fn  { p  e.  A  |  -.  p  .<_  W } )
Distinct variable groups:    .<_ , p    A, p    K, p    W, p
Allowed substitution hints:    H( p)    I( p)    V( p)

Proof of Theorem dicfnN
Dummy variables  q 
f  s  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4442 . . . . . . 7  |-  ( p  =  q  ->  (
p  .<_  W  <->  q  .<_  W ) )
21notbid 292 . . . . . 6  |-  ( p  =  q  ->  ( -.  p  .<_  W  <->  -.  q  .<_  W ) )
32elrab 3254 . . . . 5  |-  ( q  e.  { p  e.  A  |  -.  p  .<_  W }  <->  ( q  e.  A  /\  -.  q  .<_  W ) )
4 dicfn.l . . . . . . 7  |-  .<_  =  ( le `  K )
5 dicfn.a . . . . . . 7  |-  A  =  ( Atoms `  K )
6 dicfn.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
7 eqid 2454 . . . . . . 7  |-  ( ( oc `  K ) `
 W )  =  ( ( oc `  K ) `  W
)
8 eqid 2454 . . . . . . 7  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
9 eqid 2454 . . . . . . 7  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
10 dicfn.i . . . . . . 7  |-  I  =  ( ( DIsoC `  K
) `  W )
114, 5, 6, 7, 8, 9, 10dicval 37319 . . . . . 6  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( q  e.  A  /\  -.  q  .<_  W ) )  -> 
( I `  q
)  =  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ u  e.  ( ( LTrn `  K
) `  W )
( u `  (
( oc `  K
) `  W )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
) } )
12 fvex 5858 . . . . . 6  |-  ( I `
 q )  e. 
_V
1311, 12syl6eqelr 2551 . . . . 5  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( q  e.  A  /\  -.  q  .<_  W ) )  ->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ u  e.  ( ( LTrn `  K
) `  W )
( u `  (
( oc `  K
) `  W )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
) }  e.  _V )
143, 13sylan2b 473 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  q  e.  { p  e.  A  |  -.  p  .<_  W }
)  ->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ u  e.  ( ( LTrn `  K
) `  W )
( u `  (
( oc `  K
) `  W )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
) }  e.  _V )
1514ralrimiva 2868 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  A. q  e.  {
p  e.  A  |  -.  p  .<_  W }  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ u  e.  ( ( LTrn `  K
) `  W )
( u `  (
( oc `  K
) `  W )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
) }  e.  _V )
16 eqid 2454 . . . 4  |-  ( q  e.  { p  e.  A  |  -.  p  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ u  e.  ( ( LTrn `  K
) `  W )
( u `  (
( oc `  K
) `  W )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
) } )  =  ( q  e.  {
p  e.  A  |  -.  p  .<_  W }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ u  e.  ( ( LTrn `  K
) `  W )
( u `  (
( oc `  K
) `  W )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
) } )
1716fnmpt 5689 . . 3  |-  ( A. q  e.  { p  e.  A  |  -.  p  .<_  W }  { <. f ,  s >.  |  ( f  =  ( s `  ( iota_ u  e.  ( (
LTrn `  K ) `  W ) ( u `
 ( ( oc
`  K ) `  W ) )  =  q ) )  /\  s  e.  ( ( TEndo `  K ) `  W ) ) }  e.  _V  ->  (
q  e.  { p  e.  A  |  -.  p  .<_  W }  |->  {
<. f ,  s >.  |  ( f  =  ( s `  ( iota_ u  e.  ( (
LTrn `  K ) `  W ) ( u `
 ( ( oc
`  K ) `  W ) )  =  q ) )  /\  s  e.  ( ( TEndo `  K ) `  W ) ) } )  Fn  { p  e.  A  |  -.  p  .<_  W } )
1815, 17syl 16 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( q  e.  {
p  e.  A  |  -.  p  .<_  W }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ u  e.  ( ( LTrn `  K
) `  W )
( u `  (
( oc `  K
) `  W )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
) } )  Fn 
{ p  e.  A  |  -.  p  .<_  W }
)
194, 5, 6, 7, 8, 9, 10dicfval 37318 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( q  e.  { p  e.  A  |  -.  p  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ u  e.  ( ( LTrn `  K
) `  W )
( u `  (
( oc `  K
) `  W )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
) } ) )
2019fneq1d 5653 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( I  Fn  {
p  e.  A  |  -.  p  .<_  W }  <->  ( q  e.  { p  e.  A  |  -.  p  .<_  W }  |->  {
<. f ,  s >.  |  ( f  =  ( s `  ( iota_ u  e.  ( (
LTrn `  K ) `  W ) ( u `
 ( ( oc
`  K ) `  W ) )  =  q ) )  /\  s  e.  ( ( TEndo `  K ) `  W ) ) } )  Fn  { p  e.  A  |  -.  p  .<_  W } ) )
2118, 20mpbird 232 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  Fn  { p  e.  A  |  -.  p  .<_  W } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   {crab 2808   _Vcvv 3106   class class class wbr 4439   {copab 4496    |-> cmpt 4497    Fn wfn 5565   ` cfv 5570   iota_crio 6231   lecple 14794   occoc 14795   Atomscatm 35404   LHypclh 36124   LTrncltrn 36241   TEndoctendo 36894   DIsoCcdic 37315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-dic 37316
This theorem is referenced by:  dicdmN  37327
  Copyright terms: Public domain W3C validator