Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelvalN Structured version   Unicode version

Theorem dicelvalN 35975
Description: Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicval.l  |-  .<_  =  ( le `  K )
dicval.a  |-  A  =  ( Atoms `  K )
dicval.h  |-  H  =  ( LHyp `  K
)
dicval.p  |-  P  =  ( ( oc `  K ) `  W
)
dicval.t  |-  T  =  ( ( LTrn `  K
) `  W )
dicval.e  |-  E  =  ( ( TEndo `  K
) `  W )
dicval.i  |-  I  =  ( ( DIsoC `  K
) `  W )
Assertion
Ref Expression
dicelvalN  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <-> 
( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  ( 2nd `  Y )  e.  E ) ) ) )
Distinct variable groups:    g, K    T, g    g, W    Q, g
Allowed substitution hints:    A( g)    P( g)    E( g)    H( g)    I( g)    .<_ ( g)    V( g)    Y( g)

Proof of Theorem dicelvalN
Dummy variables  f 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4  |-  .<_  =  ( le `  K )
2 dicval.a . . . 4  |-  A  =  ( Atoms `  K )
3 dicval.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dicval.p . . . 4  |-  P  =  ( ( oc `  K ) `  W
)
5 dicval.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
6 dicval.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
7 dicval.i . . . 4  |-  I  =  ( ( DIsoC `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dicval 35973 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) } )
98eleq2d 2537 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <-> 
Y  e.  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) } ) )
10 vex 3116 . . . . . 6  |-  f  e. 
_V
11 vex 3116 . . . . . 6  |-  s  e. 
_V
1210, 11op1std 6791 . . . . 5  |-  ( Y  =  <. f ,  s
>.  ->  ( 1st `  Y
)  =  f )
1310, 11op2ndd 6792 . . . . . 6  |-  ( Y  =  <. f ,  s
>.  ->  ( 2nd `  Y
)  =  s )
1413fveq1d 5866 . . . . 5  |-  ( Y  =  <. f ,  s
>.  ->  ( ( 2nd `  Y ) `  ( iota_ g  e.  T  ( g `  P )  =  Q ) )  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) ) )
1512, 14eqeq12d 2489 . . . 4  |-  ( Y  =  <. f ,  s
>.  ->  ( ( 1st `  Y )  =  ( ( 2nd `  Y
) `  ( iota_ g  e.  T  ( g `  P )  =  Q ) )  <->  f  =  ( s `  ( iota_ g  e.  T  ( g `  P )  =  Q ) ) ) )
1613eleq1d 2536 . . . 4  |-  ( Y  =  <. f ,  s
>.  ->  ( ( 2nd `  Y )  e.  E  <->  s  e.  E ) )
1715, 16anbi12d 710 . . 3  |-  ( Y  =  <. f ,  s
>.  ->  ( ( ( 1st `  Y )  =  ( ( 2nd `  Y ) `  ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  ( 2nd `  Y
)  e.  E )  <-> 
( f  =  ( s `  ( iota_ g  e.  T  ( g `
 P )  =  Q ) )  /\  s  e.  E )
) )
1817elopaba 5113 . 2  |-  ( Y  e.  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) }  <->  ( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y )  =  ( ( 2nd `  Y
) `  ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  ( 2nd `  Y )  e.  E ) ) )
199, 18syl6bb 261 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <-> 
( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  ( 2nd `  Y )  e.  E ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113   <.cop 4033   class class class wbr 4447   {copab 4504    X. cxp 4997   ` cfv 5586   iota_crio 6242   1stc1st 6779   2ndc2nd 6780   lecple 14555   occoc 14556   Atomscatm 34060   LHypclh 34780   LTrncltrn 34897   TEndoctendo 35548   DIsoCcdic 35969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-1st 6781  df-2nd 6782  df-dic 35970
This theorem is referenced by:  dicelval2N  35979
  Copyright terms: Public domain W3C validator