Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibvalrel Structured version   Unicode version

Theorem dibvalrel 34813
Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.)
Hypotheses
Ref Expression
dibcl.h  |-  H  =  ( LHyp `  K
)
dibcl.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibvalrel  |-  ( ( K  e.  V  /\  W  e.  H )  ->  Rel  ( I `  X ) )

Proof of Theorem dibvalrel
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 relxp 4952 . . 3  |-  Rel  (
( ( ( DIsoA `  K ) `  W
) `  X )  X.  { ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) } )
2 dibcl.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
3 eqid 2443 . . . . . . . 8  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
4 dibcl.i . . . . . . . 8  |-  I  =  ( ( DIsoB `  K
) `  W )
52, 3, 4dibdiadm 34805 . . . . . . 7  |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  dom  ( ( DIsoA `  K
) `  W )
)
65eleq2d 2510 . . . . . 6  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( X  e.  dom  I 
<->  X  e.  dom  (
( DIsoA `  K ) `  W ) ) )
76biimpa 484 . . . . 5  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  I )  ->  X  e.  dom  ( ( DIsoA `  K ) `  W
) )
8 eqid 2443 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
9 eqid 2443 . . . . . 6  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
10 eqid 2443 . . . . . 6  |-  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )  =  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )
118, 2, 9, 10, 3, 4dibval 34792 . . . . 5  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  ( ( DIsoA `  K
) `  W )
)  ->  ( I `  X )  =  ( ( ( ( DIsoA `  K ) `  W
) `  X )  X.  { ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) } ) )
127, 11syldan 470 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  I )  ->  (
I `  X )  =  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  { ( h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) } ) )
1312releqd 4929 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  I )  ->  ( Rel  ( I `  X
)  <->  Rel  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  { ( h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) } ) ) )
141, 13mpbiri 233 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  I )  ->  Rel  ( I `  X
) )
15 rel0 4969 . . . 4  |-  Rel  (/)
16 ndmfv 5719 . . . . 5  |-  ( -.  X  e.  dom  I  ->  ( I `  X
)  =  (/) )
1716releqd 4929 . . . 4  |-  ( -.  X  e.  dom  I  ->  ( Rel  ( I `
 X )  <->  Rel  (/) ) )
1815, 17mpbiri 233 . . 3  |-  ( -.  X  e.  dom  I  ->  Rel  ( I `  X ) )
1918adantl 466 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  -.  X  e.  dom  I )  ->  Rel  ( I `  X
) )
2014, 19pm2.61dan 789 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  Rel  ( I `  X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   (/)c0 3642   {csn 3882    e. cmpt 4355    _I cid 4636    X. cxp 4843   dom cdm 4845    |` cres 4847   Rel wrel 4850   ` cfv 5423   Basecbs 14179   LHypclh 33633   LTrncltrn 33750   DIsoAcdia 34678   DIsoBcdib 34788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-dib 34789
This theorem is referenced by:  dibglbN  34816  dib2dim  34893  dih2dimbALTN  34895
  Copyright terms: Public domain W3C validator