Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibvalrel Structured version   Unicode version

Theorem dibvalrel 35978
Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.)
Hypotheses
Ref Expression
dibcl.h  |-  H  =  ( LHyp `  K
)
dibcl.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibvalrel  |-  ( ( K  e.  V  /\  W  e.  H )  ->  Rel  ( I `  X ) )

Proof of Theorem dibvalrel
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 relxp 5110 . . 3  |-  Rel  (
( ( ( DIsoA `  K ) `  W
) `  X )  X.  { ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) } )
2 dibcl.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
3 eqid 2467 . . . . . . . 8  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
4 dibcl.i . . . . . . . 8  |-  I  =  ( ( DIsoB `  K
) `  W )
52, 3, 4dibdiadm 35970 . . . . . . 7  |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  dom  ( ( DIsoA `  K
) `  W )
)
65eleq2d 2537 . . . . . 6  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( X  e.  dom  I 
<->  X  e.  dom  (
( DIsoA `  K ) `  W ) ) )
76biimpa 484 . . . . 5  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  I )  ->  X  e.  dom  ( ( DIsoA `  K ) `  W
) )
8 eqid 2467 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
9 eqid 2467 . . . . . 6  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
10 eqid 2467 . . . . . 6  |-  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )  =  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )
118, 2, 9, 10, 3, 4dibval 35957 . . . . 5  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  ( ( DIsoA `  K
) `  W )
)  ->  ( I `  X )  =  ( ( ( ( DIsoA `  K ) `  W
) `  X )  X.  { ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) } ) )
127, 11syldan 470 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  I )  ->  (
I `  X )  =  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  { ( h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) } ) )
1312releqd 5087 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  I )  ->  ( Rel  ( I `  X
)  <->  Rel  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  { ( h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) } ) ) )
141, 13mpbiri 233 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  I )  ->  Rel  ( I `  X
) )
15 rel0 5127 . . . 4  |-  Rel  (/)
16 ndmfv 5890 . . . . 5  |-  ( -.  X  e.  dom  I  ->  ( I `  X
)  =  (/) )
1716releqd 5087 . . . 4  |-  ( -.  X  e.  dom  I  ->  ( Rel  ( I `
 X )  <->  Rel  (/) ) )
1815, 17mpbiri 233 . . 3  |-  ( -.  X  e.  dom  I  ->  Rel  ( I `  X ) )
1918adantl 466 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  -.  X  e.  dom  I )  ->  Rel  ( I `  X
) )
2014, 19pm2.61dan 789 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  Rel  ( I `  X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   (/)c0 3785   {csn 4027    |-> cmpt 4505    _I cid 4790    X. cxp 4997   dom cdm 4999    |` cres 5001   Rel wrel 5004   ` cfv 5588   Basecbs 14490   LHypclh 34798   LTrncltrn 34915   DIsoAcdia 35843   DIsoBcdib 35953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-dib 35954
This theorem is referenced by:  dibglbN  35981  dib2dim  36058  dih2dimbALTN  36060
  Copyright terms: Public domain W3C validator