Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibn0 Structured version   Unicode version

Theorem dibn0 34154
Description: The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014.)
Hypotheses
Ref Expression
dibn0.b  |-  B  =  ( Base `  K
)
dibn0.l  |-  .<_  =  ( le `  K )
dibn0.h  |-  H  =  ( LHyp `  K
)
dibn0.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibn0  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =/=  (/) )

Proof of Theorem dibn0
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 dibn0.b . . 3  |-  B  =  ( Base `  K
)
2 dibn0.l . . 3  |-  .<_  =  ( le `  K )
3 dibn0.h . . 3  |-  H  =  ( LHyp `  K
)
4 eqid 2402 . . 3  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
5 eqid 2402 . . 3  |-  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) )  =  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) )
6 eqid 2402 . . 3  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
7 dibn0.i . . 3  |-  I  =  ( ( DIsoB `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dibval2 34145 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } ) )
91, 2, 3, 6dian0 34040 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
( ( DIsoA `  K
) `  W ) `  X )  =/=  (/) )
10 fvex 5815 . . . . . 6  |-  ( (
LTrn `  K ) `  W )  e.  _V
1110mptex 6080 . . . . 5  |-  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) )  e.  _V
1211snnz 4089 . . . 4  |-  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) }  =/=  (/)
139, 12jctir 536 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
( ( ( DIsoA `  K ) `  W
) `  X )  =/=  (/)  /\  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) }  =/=  (/) ) )
14 xpnz 5365 . . 3  |-  ( ( ( ( ( DIsoA `  K ) `  W
) `  X )  =/=  (/)  /\  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) }  =/=  (/) )  <->  ( (
( ( DIsoA `  K
) `  W ) `  X )  X.  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } )  =/=  (/) )
1513, 14sylib 196 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
( ( ( DIsoA `  K ) `  W
) `  X )  X.  { ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } )  =/=  (/) )
168, 15eqnetrd 2696 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   (/)c0 3737   {csn 3971   class class class wbr 4394    |-> cmpt 4452    _I cid 4732    X. cxp 4940    |` cres 4944   ` cfv 5525   Basecbs 14733   lecple 14808   HLchlt 32349   LHypclh 32982   LTrncltrn 33099   DIsoAcdia 34029   DIsoBcdib 34139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-map 7379  df-preset 15773  df-poset 15791  df-plt 15804  df-lub 15820  df-glb 15821  df-join 15822  df-meet 15823  df-p0 15885  df-p1 15886  df-lat 15892  df-clat 15954  df-oposet 32175  df-ol 32177  df-oml 32178  df-covers 32265  df-ats 32266  df-atl 32297  df-cvlat 32321  df-hlat 32350  df-lhyp 32986  df-laut 32987  df-ldil 33102  df-ltrn 33103  df-trl 33158  df-disoa 34030  df-dib 34140
This theorem is referenced by:  dibord  34160  diblss  34171
  Copyright terms: Public domain W3C validator