Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibintclN Structured version   Unicode version

Theorem dibintclN 35118
Description: The intersection of partial isomorphism B closed subspaces is a closed subspace. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibintcl.h  |-  H  =  ( LHyp `  K
)
dibintcl.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibintclN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| S  e.  ran  I )

Proof of Theorem dibintclN
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dibintcl.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
2 dibintcl.i . . . . . . . 8  |-  I  =  ( ( DIsoB `  K
) `  W )
31, 2dibf11N 35112 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )
43adantr 465 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I : dom  I -1-1-onto-> ran  I )
5 f1ofn 5740 . . . . . 6  |-  ( I : dom  I -1-1-onto-> ran  I  ->  I  Fn  dom  I
)
64, 5syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I  Fn  dom  I )
7 cnvimass 5287 . . . . 5  |-  ( `' I " S ) 
C_  dom  I
8 fnssres 5622 . . . . 5  |-  ( ( I  Fn  dom  I  /\  ( `' I " S )  C_  dom  I )  ->  (
I  |`  ( `' I " S ) )  Fn  ( `' I " S ) )
96, 7, 8sylancl 662 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I  |`  ( `' I " S ) )  Fn  ( `' I " S ) )
10 fniinfv 5849 . . . 4  |-  ( ( I  |`  ( `' I " S ) )  Fn  ( `' I " S )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| ran  ( I  |`  ( `' I " S ) ) )
119, 10syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| ran  ( I  |`  ( `' I " S ) ) )
12 df-ima 4951 . . . . 5  |-  ( I
" ( `' I " S ) )  =  ran  ( I  |`  ( `' I " S ) )
13 f1ofo 5746 . . . . . . . 8  |-  ( I : dom  I -1-1-onto-> ran  I  ->  I : dom  I -onto-> ran  I )
143, 13syl 16 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -onto-> ran  I )
1514adantr 465 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I : dom  I -onto-> ran  I
)
16 simprl 755 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  S  C_ 
ran  I )
17 foimacnv 5756 . . . . . 6  |-  ( ( I : dom  I -onto-> ran  I  /\  S  C_  ran  I )  ->  (
I " ( `' I " S ) )  =  S )
1815, 16, 17syl2anc 661 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I " ( `' I " S ) )  =  S )
1912, 18syl5eqr 2506 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ran  ( I  |`  ( `' I " S ) )  =  S )
2019inteqd 4231 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| ran  ( I  |`  ( `' I " S ) )  =  |^| S
)
2111, 20eqtrd 2492 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| S )
22 simpl 457 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
237a1i 11 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  dom  I )
24 simprr 756 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
25 n0 3744 . . . . . . 7  |-  ( S  =/=  (/)  <->  E. y  y  e.  S )
2624, 25sylib 196 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  E. y 
y  e.  S )
2716sselda 3454 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  y  e.  ran  I
)
283ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  I : dom  I -1-1-onto-> ran  I )
2928, 5syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  I  Fn  dom  I
)
30 fvelrnb 5838 . . . . . . . . 9  |-  ( I  Fn  dom  I  -> 
( y  e.  ran  I 
<->  E. x  e.  dom  I ( I `  x )  =  y ) )
3129, 30syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( y  e.  ran  I 
<->  E. x  e.  dom  I ( I `  x )  =  y ) )
3227, 31mpbid 210 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  E. x  e.  dom  I ( I `  x )  =  y )
33 f1ofun 5741 . . . . . . . . . . . . . . . 16  |-  ( I : dom  I -1-1-onto-> ran  I  ->  Fun  I )
343, 33syl 16 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Fun  I )
3534adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  Fun  I )
36 fvimacnv 5917 . . . . . . . . . . . . . 14  |-  ( ( Fun  I  /\  x  e.  dom  I )  -> 
( ( I `  x )  e.  S  <->  x  e.  ( `' I " S ) ) )
3735, 36sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  x  e.  dom  I )  ->  ( ( I `
 x )  e.  S  <->  x  e.  ( `' I " S ) ) )
38 ne0i 3741 . . . . . . . . . . . . 13  |-  ( x  e.  ( `' I " S )  ->  ( `' I " S )  =/=  (/) )
3937, 38syl6bi 228 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  x  e.  dom  I )  ->  ( ( I `
 x )  e.  S  ->  ( `' I " S )  =/=  (/) ) )
4039ex 434 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
x  e.  dom  I  ->  ( ( I `  x )  e.  S  ->  ( `' I " S )  =/=  (/) ) ) )
41 eleq1 2523 . . . . . . . . . . . . 13  |-  ( ( I `  x )  =  y  ->  (
( I `  x
)  e.  S  <->  y  e.  S ) )
4241biimprd 223 . . . . . . . . . . . 12  |-  ( ( I `  x )  =  y  ->  (
y  e.  S  -> 
( I `  x
)  e.  S ) )
4342imim1d 75 . . . . . . . . . . 11  |-  ( ( I `  x )  =  y  ->  (
( ( I `  x )  e.  S  ->  ( `' I " S )  =/=  (/) )  -> 
( y  e.  S  ->  ( `' I " S )  =/=  (/) ) ) )
4440, 43syl9 71 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( I `  x
)  =  y  -> 
( x  e.  dom  I  ->  ( y  e.  S  ->  ( `' I " S )  =/=  (/) ) ) ) )
4544com24 87 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
y  e.  S  -> 
( x  e.  dom  I  ->  ( ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) ) ) )
4645imp 429 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( x  e.  dom  I  ->  ( ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) ) )
4746rexlimdv 2936 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( E. x  e. 
dom  I ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) )
4832, 47mpd 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( `' I " S )  =/=  (/) )
4926, 48exlimddv 1693 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S )  =/=  (/) )
50 eqid 2451 . . . . . 6  |-  ( glb `  K )  =  ( glb `  K )
5150, 1, 2dibglbN 35117 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( `' I " S ) 
C_  dom  I  /\  ( `' I " S )  =/=  (/) ) )  -> 
( I `  (
( glb `  K
) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( I `
 y ) )
5222, 23, 49, 51syl12anc 1217 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( I `  y ) )
53 fvres 5803 . . . . 5  |-  ( y  e.  ( `' I " S )  ->  (
( I  |`  ( `' I " S ) ) `  y )  =  ( I `  y ) )
5453iineq2i 4288 . . . 4  |-  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^|_ y  e.  ( `' I " S ) ( I `  y
)
5552, 54syl6eqr 2510 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `  y ) )
56 hlclat 33309 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  CLat )
5756ad2antrr 725 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  K  e.  CLat )
58 eqid 2451 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
59 eqid 2451 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
6058, 59, 1, 2dibdmN 35108 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  =  {
x  e.  ( Base `  K )  |  x ( le `  K
) W } )
61 ssrab2 3535 . . . . . . . . 9  |-  { x  e.  ( Base `  K
)  |  x ( le `  K ) W }  C_  ( Base `  K )
6260, 61syl6eqss 3504 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  C_  ( Base `  K ) )
6362adantr 465 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  dom  I  C_  ( Base `  K
) )
647, 63syl5ss 3465 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  ( Base `  K
) )
6558, 50clatglbcl 15386 . . . . . 6  |-  ( ( K  e.  CLat  /\  ( `' I " S ) 
C_  ( Base `  K
) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
) )
6657, 64, 65syl2anc 661 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
) )
67 n0 3744 . . . . . . 7  |-  ( ( `' I " S )  =/=  (/)  <->  E. y  y  e.  ( `' I " S ) )
6849, 67sylib 196 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  E. y 
y  e.  ( `' I " S ) )
69 hllat 33314 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
7069ad3antrrr 729 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  K  e.  Lat )
7166adantr 465 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) )  e.  ( Base `  K ) )
7264sselda 3454 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y  e.  (
Base `  K )
)
7358, 1lhpbase 33948 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
7473ad3antlr 730 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  W  e.  (
Base `  K )
)
7556ad3antrrr 729 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  K  e.  CLat )
7660adantr 465 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  dom  I  =  { x  e.  ( Base `  K
)  |  x ( le `  K ) W } )
777, 76syl5sseq 3502 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  { x  e.  ( Base `  K
)  |  x ( le `  K ) W } )
7877, 61syl6ss 3466 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  ( Base `  K
) )
7978adantr 465 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( `' I " S )  C_  ( Base `  K ) )
80 simpr 461 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y  e.  ( `' I " S ) )
8158, 59, 50clatglble 15397 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  ( `' I " S ) 
C_  ( Base `  K
)  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) y )
8275, 79, 80, 81syl3anc 1219 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) y )
837sseli 3450 . . . . . . . . . 10  |-  ( y  e.  ( `' I " S )  ->  y  e.  dom  I )
8483adantl 466 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y  e.  dom  I )
8558, 59, 1, 2dibeldmN 35109 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( y  e.  dom  I 
<->  ( y  e.  (
Base `  K )  /\  y ( le `  K ) W ) ) )
8685ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( y  e. 
dom  I  <->  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) ) )
8784, 86mpbid 210 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )
8887simprd 463 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y ( le
`  K ) W )
8958, 59, 70, 71, 72, 74, 82, 88lattrd 15330 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W )
9068, 89exlimddv 1693 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) ) ( le `  K
) W )
9158, 59, 1, 2dibeldmN 35109 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( glb `  K ) `  ( `' I " S ) )  e.  dom  I  <->  ( ( ( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
)  /\  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W ) ) )
9291adantr 465 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( ( glb `  K
) `  ( `' I " S ) )  e.  dom  I  <->  ( (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
)  /\  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W ) ) )
9366, 90, 92mpbir2and 913 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  dom  I )
941, 2dibclN 35113 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( glb `  K ) `  ( `' I " S ) )  e.  dom  I
)  ->  ( I `  ( ( glb `  K
) `  ( `' I " S ) ) )  e.  ran  I
)
9593, 94syldan 470 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  e.  ran  I )
9655, 95eqeltrrd 2540 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  e. 
ran  I )
9721, 96eqeltrrd 2540 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| S  e.  ran  I )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2644   E.wrex 2796   {crab 2799    C_ wss 3426   (/)c0 3735   |^|cint 4226   |^|_ciin 4270   class class class wbr 4390   `'ccnv 4937   dom cdm 4938   ran crn 4939    |` cres 4940   "cima 4941   Fun wfun 5510    Fn wfn 5511   -onto->wfo 5514   -1-1-onto->wf1o 5515   ` cfv 5516   Basecbs 14276   lecple 14347   glbcglb 15215   Latclat 15317   CLatccla 15379   HLchlt 33301   LHypclh 33934   DIsoBcdib 35089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-riotaBAD 32910
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-iin 4272  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-1st 6677  df-2nd 6678  df-undef 6892  df-map 7316  df-poset 15218  df-plt 15230  df-lub 15246  df-glb 15247  df-join 15248  df-meet 15249  df-p0 15311  df-p1 15312  df-lat 15318  df-clat 15380  df-oposet 33127  df-ol 33129  df-oml 33130  df-covers 33217  df-ats 33218  df-atl 33249  df-cvlat 33273  df-hlat 33302  df-llines 33448  df-lplanes 33449  df-lvols 33450  df-lines 33451  df-psubsp 33453  df-pmap 33454  df-padd 33746  df-lhyp 33938  df-laut 33939  df-ldil 34054  df-ltrn 34055  df-trl 34109  df-disoa 34980  df-dib 35090
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator