Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibintclN Structured version   Visualization version   Unicode version

Theorem dibintclN 34806
Description: The intersection of partial isomorphism B closed subspaces is a closed subspace. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibintcl.h  |-  H  =  ( LHyp `  K
)
dibintcl.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibintclN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| S  e.  ran  I )

Proof of Theorem dibintclN
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dibintcl.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
2 dibintcl.i . . . . . . . 8  |-  I  =  ( ( DIsoB `  K
) `  W )
31, 2dibf11N 34800 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )
43adantr 472 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I : dom  I -1-1-onto-> ran  I )
5 f1ofn 5829 . . . . . 6  |-  ( I : dom  I -1-1-onto-> ran  I  ->  I  Fn  dom  I
)
64, 5syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I  Fn  dom  I )
7 cnvimass 5194 . . . . 5  |-  ( `' I " S ) 
C_  dom  I
8 fnssres 5699 . . . . 5  |-  ( ( I  Fn  dom  I  /\  ( `' I " S )  C_  dom  I )  ->  (
I  |`  ( `' I " S ) )  Fn  ( `' I " S ) )
96, 7, 8sylancl 675 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I  |`  ( `' I " S ) )  Fn  ( `' I " S ) )
10 fniinfv 5939 . . . 4  |-  ( ( I  |`  ( `' I " S ) )  Fn  ( `' I " S )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| ran  ( I  |`  ( `' I " S ) ) )
119, 10syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| ran  ( I  |`  ( `' I " S ) ) )
12 df-ima 4852 . . . . 5  |-  ( I
" ( `' I " S ) )  =  ran  ( I  |`  ( `' I " S ) )
13 f1ofo 5835 . . . . . . . 8  |-  ( I : dom  I -1-1-onto-> ran  I  ->  I : dom  I -onto-> ran  I )
143, 13syl 17 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -onto-> ran  I )
1514adantr 472 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I : dom  I -onto-> ran  I
)
16 simprl 772 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  S  C_ 
ran  I )
17 foimacnv 5845 . . . . . 6  |-  ( ( I : dom  I -onto-> ran  I  /\  S  C_  ran  I )  ->  (
I " ( `' I " S ) )  =  S )
1815, 16, 17syl2anc 673 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I " ( `' I " S ) )  =  S )
1912, 18syl5eqr 2519 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ran  ( I  |`  ( `' I " S ) )  =  S )
2019inteqd 4231 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| ran  ( I  |`  ( `' I " S ) )  =  |^| S
)
2111, 20eqtrd 2505 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| S )
22 simpl 464 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
237a1i 11 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  dom  I )
24 simprr 774 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
25 n0 3732 . . . . . . 7  |-  ( S  =/=  (/)  <->  E. y  y  e.  S )
2624, 25sylib 201 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  E. y 
y  e.  S )
2716sselda 3418 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  y  e.  ran  I
)
283ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  I : dom  I -1-1-onto-> ran  I )
2928, 5syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  I  Fn  dom  I
)
30 fvelrnb 5926 . . . . . . . . 9  |-  ( I  Fn  dom  I  -> 
( y  e.  ran  I 
<->  E. x  e.  dom  I ( I `  x )  =  y ) )
3129, 30syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( y  e.  ran  I 
<->  E. x  e.  dom  I ( I `  x )  =  y ) )
3227, 31mpbid 215 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  E. x  e.  dom  I ( I `  x )  =  y )
33 f1ofun 5830 . . . . . . . . . . . . . . . 16  |-  ( I : dom  I -1-1-onto-> ran  I  ->  Fun  I )
343, 33syl 17 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Fun  I )
3534adantr 472 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  Fun  I )
36 fvimacnv 6012 . . . . . . . . . . . . . 14  |-  ( ( Fun  I  /\  x  e.  dom  I )  -> 
( ( I `  x )  e.  S  <->  x  e.  ( `' I " S ) ) )
3735, 36sylan 479 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  x  e.  dom  I )  ->  ( ( I `
 x )  e.  S  <->  x  e.  ( `' I " S ) ) )
38 ne0i 3728 . . . . . . . . . . . . 13  |-  ( x  e.  ( `' I " S )  ->  ( `' I " S )  =/=  (/) )
3937, 38syl6bi 236 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  x  e.  dom  I )  ->  ( ( I `
 x )  e.  S  ->  ( `' I " S )  =/=  (/) ) )
4039ex 441 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
x  e.  dom  I  ->  ( ( I `  x )  e.  S  ->  ( `' I " S )  =/=  (/) ) ) )
41 eleq1 2537 . . . . . . . . . . . . 13  |-  ( ( I `  x )  =  y  ->  (
( I `  x
)  e.  S  <->  y  e.  S ) )
4241biimprd 231 . . . . . . . . . . . 12  |-  ( ( I `  x )  =  y  ->  (
y  e.  S  -> 
( I `  x
)  e.  S ) )
4342imim1d 77 . . . . . . . . . . 11  |-  ( ( I `  x )  =  y  ->  (
( ( I `  x )  e.  S  ->  ( `' I " S )  =/=  (/) )  -> 
( y  e.  S  ->  ( `' I " S )  =/=  (/) ) ) )
4440, 43syl9 72 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( I `  x
)  =  y  -> 
( x  e.  dom  I  ->  ( y  e.  S  ->  ( `' I " S )  =/=  (/) ) ) ) )
4544com24 89 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
y  e.  S  -> 
( x  e.  dom  I  ->  ( ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) ) ) )
4645imp 436 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( x  e.  dom  I  ->  ( ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) ) )
4746rexlimdv 2870 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( E. x  e. 
dom  I ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) )
4832, 47mpd 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( `' I " S )  =/=  (/) )
4926, 48exlimddv 1789 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S )  =/=  (/) )
50 eqid 2471 . . . . . 6  |-  ( glb `  K )  =  ( glb `  K )
5150, 1, 2dibglbN 34805 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( `' I " S ) 
C_  dom  I  /\  ( `' I " S )  =/=  (/) ) )  -> 
( I `  (
( glb `  K
) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( I `
 y ) )
5222, 23, 49, 51syl12anc 1290 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( I `  y ) )
53 fvres 5893 . . . . 5  |-  ( y  e.  ( `' I " S )  ->  (
( I  |`  ( `' I " S ) ) `  y )  =  ( I `  y ) )
5453iineq2i 4289 . . . 4  |-  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^|_ y  e.  ( `' I " S ) ( I `  y
)
5552, 54syl6eqr 2523 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `  y ) )
56 hlclat 32995 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  CLat )
5756ad2antrr 740 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  K  e.  CLat )
58 eqid 2471 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
59 eqid 2471 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
6058, 59, 1, 2dibdmN 34796 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  =  {
x  e.  ( Base `  K )  |  x ( le `  K
) W } )
61 ssrab2 3500 . . . . . . . . 9  |-  { x  e.  ( Base `  K
)  |  x ( le `  K ) W }  C_  ( Base `  K )
6260, 61syl6eqss 3468 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  C_  ( Base `  K ) )
6362adantr 472 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  dom  I  C_  ( Base `  K
) )
647, 63syl5ss 3429 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  ( Base `  K
) )
6558, 50clatglbcl 16438 . . . . . 6  |-  ( ( K  e.  CLat  /\  ( `' I " S ) 
C_  ( Base `  K
) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
) )
6657, 64, 65syl2anc 673 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
) )
67 n0 3732 . . . . . . 7  |-  ( ( `' I " S )  =/=  (/)  <->  E. y  y  e.  ( `' I " S ) )
6849, 67sylib 201 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  E. y 
y  e.  ( `' I " S ) )
69 hllat 33000 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
7069ad3antrrr 744 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  K  e.  Lat )
7166adantr 472 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) )  e.  ( Base `  K ) )
7264sselda 3418 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y  e.  (
Base `  K )
)
7358, 1lhpbase 33634 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
7473ad3antlr 745 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  W  e.  (
Base `  K )
)
7556ad3antrrr 744 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  K  e.  CLat )
7660adantr 472 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  dom  I  =  { x  e.  ( Base `  K
)  |  x ( le `  K ) W } )
777, 76syl5sseq 3466 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  { x  e.  ( Base `  K
)  |  x ( le `  K ) W } )
7877, 61syl6ss 3430 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  ( Base `  K
) )
7978adantr 472 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( `' I " S )  C_  ( Base `  K ) )
80 simpr 468 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y  e.  ( `' I " S ) )
8158, 59, 50clatglble 16449 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  ( `' I " S ) 
C_  ( Base `  K
)  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) y )
8275, 79, 80, 81syl3anc 1292 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) y )
837sseli 3414 . . . . . . . . . 10  |-  ( y  e.  ( `' I " S )  ->  y  e.  dom  I )
8483adantl 473 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y  e.  dom  I )
8558, 59, 1, 2dibeldmN 34797 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( y  e.  dom  I 
<->  ( y  e.  (
Base `  K )  /\  y ( le `  K ) W ) ) )
8685ad2antrr 740 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( y  e. 
dom  I  <->  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) ) )
8784, 86mpbid 215 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )
8887simprd 470 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y ( le
`  K ) W )
8958, 59, 70, 71, 72, 74, 82, 88lattrd 16382 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W )
9068, 89exlimddv 1789 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) ) ( le `  K
) W )
9158, 59, 1, 2dibeldmN 34797 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( glb `  K ) `  ( `' I " S ) )  e.  dom  I  <->  ( ( ( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
)  /\  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W ) ) )
9291adantr 472 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( ( glb `  K
) `  ( `' I " S ) )  e.  dom  I  <->  ( (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
)  /\  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W ) ) )
9366, 90, 92mpbir2and 936 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  dom  I )
941, 2dibclN 34801 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( glb `  K ) `  ( `' I " S ) )  e.  dom  I
)  ->  ( I `  ( ( glb `  K
) `  ( `' I " S ) ) )  e.  ran  I
)
9593, 94syldan 478 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  e.  ran  I )
9655, 95eqeltrrd 2550 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  e. 
ran  I )
9721, 96eqeltrrd 2550 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| S  e.  ran  I )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904    =/= wne 2641   E.wrex 2757   {crab 2760    C_ wss 3390   (/)c0 3722   |^|cint 4226   |^|_ciin 4270   class class class wbr 4395   `'ccnv 4838   dom cdm 4839   ran crn 4840    |` cres 4841   "cima 4842   Fun wfun 5583    Fn wfn 5584   -onto->wfo 5587   -1-1-onto->wf1o 5588   ` cfv 5589   Basecbs 15199   lecple 15275   glbcglb 16266   Latclat 16369   CLatccla 16431   HLchlt 32987   LHypclh 33620   DIsoBcdib 34777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-riotaBAD 32589
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-undef 7038  df-map 7492  df-preset 16251  df-poset 16269  df-plt 16282  df-lub 16298  df-glb 16299  df-join 16300  df-meet 16301  df-p0 16363  df-p1 16364  df-lat 16370  df-clat 16432  df-oposet 32813  df-ol 32815  df-oml 32816  df-covers 32903  df-ats 32904  df-atl 32935  df-cvlat 32959  df-hlat 32988  df-llines 33134  df-lplanes 33135  df-lvols 33136  df-lines 33137  df-psubsp 33139  df-pmap 33140  df-padd 33432  df-lhyp 33624  df-laut 33625  df-ldil 33740  df-ltrn 33741  df-trl 33796  df-disoa 34668  df-dib 34778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator