Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibglbN Structured version   Visualization version   Unicode version

Theorem dibglbN 34734
Description: Partial isomorphism B of a lattice glb. (Contributed by NM, 9-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibglb.g  |-  G  =  ( glb `  K
)
dibglb.h  |-  H  =  ( LHyp `  K
)
dibglb.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibglbN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
I `  ( G `  S ) )  = 
|^|_ x  e.  S  ( I `  x
) )
Distinct variable groups:    x, G    x, H    x, K    x, S    x, W
Allowed substitution hint:    I( x)

Proof of Theorem dibglbN
Dummy variables  f 
s  h  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 459 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simprl 764 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  S  C_ 
dom  I )
3 eqid 2451 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
4 eqid 2451 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
5 dibglb.h . . . . . 6  |-  H  =  ( LHyp `  K
)
6 dibglb.i . . . . . 6  |-  I  =  ( ( DIsoB `  K
) `  W )
73, 4, 5, 6dibdmN 34725 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  =  {
y  e.  ( Base `  K )  |  y ( le `  K
) W } )
87sseq2d 3460 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( S  C_  dom  I 
<->  S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } ) )
98adantr 467 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( S  C_  dom  I  <->  S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } ) )
102, 9mpbid 214 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  S  C_ 
{ y  e.  (
Base `  K )  |  y ( le
`  K ) W } )
11 simprr 766 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
125, 6dibvalrel 34731 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Rel  ( I `  ( G `  S ) ) )
1312adantr 467 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  Rel  ( I `  ( G `  S )
) )
14 n0 3741 . . . . . . . 8  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
1514biimpi 198 . . . . . . 7  |-  ( S  =/=  (/)  ->  E. x  x  e.  S )
1615ad2antll 735 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  E. x  x  e.  S )
175, 6dibvalrel 34731 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Rel  ( I `  x ) )
1817adantr 467 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  Rel  ( I `  x
) )
1918a1d 26 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( x  e.  S  ->  Rel  ( I `  x ) ) )
2019ancld 556 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( x  e.  S  ->  ( x  e.  S  /\  Rel  ( I `  x ) ) ) )
2120eximdv 1764 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( E. x  x  e.  S  ->  E. x
( x  e.  S  /\  Rel  ( I `  x ) ) ) )
2216, 21mpd 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  E. x ( x  e.  S  /\  Rel  (
I `  x )
) )
23 df-rex 2743 . . . . 5  |-  ( E. x  e.  S  Rel  ( I `  x
)  <->  E. x ( x  e.  S  /\  Rel  ( I `  x
) ) )
2422, 23sylibr 216 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  E. x  e.  S  Rel  ( I `  x
) )
25 reliin 4955 . . . 4  |-  ( E. x  e.  S  Rel  ( I `  x
)  ->  Rel  |^|_ x  e.  S  ( I `  x ) )
2624, 25syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  Rel  |^|_ x  e.  S  ( I `  x
) )
27 id 22 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) ) )
28 simpl 459 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
29 simprl 764 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } )
30 eqid 2451 . . . . . . . . . . . . 13  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
313, 4, 5, 30diadm 34603 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  ( ( DIsoA `  K ) `  W
)  =  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } )
3231adantr 467 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  dom  ( ( DIsoA `  K
) `  W )  =  { y  e.  (
Base `  K )  |  y ( le
`  K ) W } )
3329, 32sseqtr4d 3469 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  S  C_  dom  ( (
DIsoA `  K ) `  W ) )
34 simprr 766 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
35 dibglb.g . . . . . . . . . . 11  |-  G  =  ( glb `  K
)
3635, 5, 30diaglbN 34623 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  ( ( DIsoA `  K
) `  W )  /\  S  =/=  (/) ) )  ->  ( ( (
DIsoA `  K ) `  W ) `  ( G `  S )
)  =  |^|_ x  e.  S  ( (
( DIsoA `  K ) `  W ) `  x
) )
3728, 33, 34, 36syl12anc 1266 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( ( ( DIsoA `  K ) `  W
) `  ( G `  S ) )  = 
|^|_ x  e.  S  ( ( ( DIsoA `  K ) `  W
) `  x )
)
3837eleq2d 2514 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( f  e.  ( ( ( DIsoA `  K
) `  W ) `  ( G `  S
) )  <->  f  e.  |^|_
x  e.  S  ( ( ( DIsoA `  K
) `  W ) `  x ) ) )
39 vex 3048 . . . . . . . . 9  |-  f  e. 
_V
40 eliin 4284 . . . . . . . . 9  |-  ( f  e.  _V  ->  (
f  e.  |^|_ x  e.  S  ( (
( DIsoA `  K ) `  W ) `  x
)  <->  A. x  e.  S  f  e.  ( (
( DIsoA `  K ) `  W ) `  x
) ) )
4139, 40ax-mp 5 . . . . . . . 8  |-  ( f  e.  |^|_ x  e.  S  ( ( ( DIsoA `  K ) `  W
) `  x )  <->  A. x  e.  S  f  e.  ( ( (
DIsoA `  K ) `  W ) `  x
) )
4238, 41syl6bb 265 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( f  e.  ( ( ( DIsoA `  K
) `  W ) `  ( G `  S
) )  <->  A. x  e.  S  f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )
) )
4342anbi1d 711 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( G `  S ) )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) )  <->  ( A. x  e.  S  f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )  /\  s  =  (
h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) ) ) )
44 r19.27zv 3869 . . . . . . 7  |-  ( S  =/=  (/)  ->  ( A. x  e.  S  (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  x
)  /\  s  =  ( h  e.  (
( LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) )  <-> 
( A. x  e.  S  f  e.  ( ( ( DIsoA `  K
) `  W ) `  x )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) ) ) )
4544ad2antll 735 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( A. x  e.  S  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )  /\  s  =  (
h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) )  <-> 
( A. x  e.  S  f  e.  ( ( ( DIsoA `  K
) `  W ) `  x )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) ) ) )
4643, 45bitr4d 260 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( G `  S ) )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) )  <->  A. x  e.  S  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )  /\  s  =  (
h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) ) ) )
47 hlclat 32924 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  CLat )
4847ad2antrr 732 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  K  e.  CLat )
49 ssrab2 3514 . . . . . . . 8  |-  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  C_  ( Base `  K )
5029, 49syl6ss 3444 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  ->  S  C_  ( Base `  K
) )
513, 35clatglbcl 16360 . . . . . . 7  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
) )  ->  ( G `  S )  e.  ( Base `  K
) )
5248, 50, 51syl2anc 667 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( G `  S
)  e.  ( Base `  K ) )
53 hllat 32929 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
5453ad3antrrr 736 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  K  e.  Lat )
5547ad3antrrr 736 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  K  e.  CLat )
56 simplrl 770 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } )
5756, 49syl6ss 3444 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  S  C_  ( Base `  K ) )
5855, 57, 51syl2anc 667 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
)  e.  ( Base `  K ) )
5950sselda 3432 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  ( Base `  K ) )
603, 5lhpbase 33563 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
6160ad3antlr 737 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  W  e.  ( Base `  K ) )
62 simpr 463 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  S )
633, 4, 35clatglble 16371 . . . . . . . . 9  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
)  /\  x  e.  S )  ->  ( G `  S )
( le `  K
) x )
6455, 57, 62, 63syl3anc 1268 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
) ( le `  K ) x )
6529sselda 3432 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } )
66 breq1 4405 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y ( le `  K ) W  <->  x ( le `  K ) W ) )
6766elrab 3196 . . . . . . . . . 10  |-  ( x  e.  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  <->  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W ) )
6865, 67sylib 200 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) )
6968simprd 465 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x ( le `  K ) W )
703, 4, 54, 58, 59, 61, 64, 69lattrd 16304 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
) ( le `  K ) W )
7116, 70exlimddv 1781 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( G `  S
) ( le `  K ) W )
72 eqid 2451 . . . . . . 7  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
73 eqid 2451 . . . . . . 7  |-  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )  =  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )
743, 4, 5, 72, 73, 30, 6dibopelval2 34713 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( G `
 S )  e.  ( Base `  K
)  /\  ( G `  S ) ( le
`  K ) W ) )  ->  ( <. f ,  s >.  e.  ( I `  ( G `  S )
)  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( G `  S ) )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) ) ) )
7528, 52, 71, 74syl12anc 1266 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( <. f ,  s
>.  e.  ( I `  ( G `  S ) )  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( G `  S ) )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) ) ) )
76 opex 4664 . . . . . . 7  |-  <. f ,  s >.  e.  _V
77 eliin 4284 . . . . . . 7  |-  ( <.
f ,  s >.  e.  _V  ->  ( <. f ,  s >.  e.  |^|_ x  e.  S  ( I `
 x )  <->  A. x  e.  S  <. f ,  s >.  e.  (
I `  x )
) )
7876, 77ax-mp 5 . . . . . 6  |-  ( <.
f ,  s >.  e.  |^|_ x  e.  S  ( I `  x
)  <->  A. x  e.  S  <. f ,  s >.  e.  ( I `  x
) )
79 simpll 760 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( K  e.  HL  /\  W  e.  H ) )
803, 4, 5, 72, 73, 30, 6dibopelval2 34713 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W ) )  ->  ( <. f ,  s >.  e.  ( I `  x
)  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )  /\  s  =  (
h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) ) ) )
8179, 68, 80syl2anc 667 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( <. f ,  s
>.  e.  ( I `  x )  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )  /\  s  =  (
h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) ) ) )
8281ralbidva 2824 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( A. x  e.  S  <. f ,  s
>.  e.  ( I `  x )  <->  A. x  e.  S  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  x )  /\  s  =  (
h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) ) ) )
8378, 82syl5bb 261 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( <. f ,  s
>.  e.  |^|_ x  e.  S  ( I `  x
)  <->  A. x  e.  S  ( f  e.  ( ( ( DIsoA `  K
) `  W ) `  x )  /\  s  =  ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) ) ) )
8446, 75, 833bitr4d 289 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( <. f ,  s
>.  e.  ( I `  ( G `  S ) )  <->  <. f ,  s
>.  e.  |^|_ x  e.  S  ( I `  x
) ) )
8584eqrelrdv2 4934 . . 3  |-  ( ( ( Rel  ( I `
 ( G `  S ) )  /\  Rel  |^|_ x  e.  S  ( I `  x
) )  /\  (
( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) ) )  ->  ( I `  ( G `  S ) )  =  |^|_ x  e.  S  ( I `  x ) )
8613, 26, 27, 85syl21anc 1267 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  { y  e.  ( Base `  K )  |  y ( le `  K
) W }  /\  S  =/=  (/) ) )  -> 
( I `  ( G `  S )
)  =  |^|_ x  e.  S  ( I `  x ) )
871, 10, 11, 86syl12anc 1266 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
I `  ( G `  S ) )  = 
|^|_ x  e.  S  ( I `  x
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444   E.wex 1663    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738   {crab 2741   _Vcvv 3045    C_ wss 3404   (/)c0 3731   <.cop 3974   |^|_ciin 4279   class class class wbr 4402    |-> cmpt 4461    _I cid 4744   dom cdm 4834    |` cres 4836   Rel wrel 4839   ` cfv 5582   Basecbs 15121   lecple 15197   glbcglb 16188   Latclat 16291   CLatccla 16353   HLchlt 32916   LHypclh 33549   LTrncltrn 33666   DIsoAcdia 34596   DIsoBcdib 34706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-map 7474  df-preset 16173  df-poset 16191  df-plt 16204  df-lub 16220  df-glb 16221  df-join 16222  df-meet 16223  df-p0 16285  df-p1 16286  df-lat 16292  df-clat 16354  df-oposet 32742  df-ol 32744  df-oml 32745  df-covers 32832  df-ats 32833  df-atl 32864  df-cvlat 32888  df-hlat 32917  df-lhyp 33553  df-laut 33554  df-ldil 33669  df-ltrn 33670  df-trl 33725  df-disoa 34597  df-dib 34707
This theorem is referenced by:  dibintclN  34735  dihglblem3N  34863  dihmeetlem2N  34867
  Copyright terms: Public domain W3C validator