Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval3 Structured version   Unicode version

Theorem dibelval3 34684
Description: Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
dibval3.b  |-  B  =  ( Base `  K
)
dibval3.l  |-  .<_  =  ( le `  K )
dibval3.h  |-  H  =  ( LHyp `  K
)
dibval3.t  |-  T  =  ( ( LTrn `  K
) `  W )
dibval3.r  |-  R  =  ( ( trL `  K
) `  W )
dibval3.o  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
dibval3.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibelval3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( Y  e.  ( I `  X )  <->  E. f  e.  T  ( Y  =  <. f ,  .0.  >.  /\  ( R `  f
)  .<_  X ) ) )
Distinct variable groups:    f, K    g, K    T, f    f, W   
g, W    f, X    .<_ , f    B, f    f, H    .0. , f    T, g    f, V   
f, Y
Allowed substitution hints:    B( g)    R( f, g)    H( g)    I(
f, g)    .<_ ( g)    V( g)    X( g)    Y( g)    .0. ( g)

Proof of Theorem dibelval3
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 dibval3.b . . . 4  |-  B  =  ( Base `  K
)
2 dibval3.l . . . 4  |-  .<_  =  ( le `  K )
3 dibval3.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dibval3.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
5 dibval3.o . . . 4  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
6 eqid 2422 . . . 4  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
7 dibval3.i . . . 4  |-  I  =  ( ( DIsoB `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dibval2 34681 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  {  .0.  } ) )
98eleq2d 2492 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( Y  e.  ( I `  X )  <->  Y  e.  ( ( ( (
DIsoA `  K ) `  W ) `  X
)  X.  {  .0.  } ) ) )
10 dibval3.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
111, 2, 3, 4, 10, 6diaelval 34570 . . . . . 6  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  X
)  <->  ( f  e.  T  /\  ( R `
 f )  .<_  X ) ) )
1211anbi1d 709 . . . . 5  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
( f  e.  ( ( ( DIsoA `  K
) `  W ) `  X )  /\  Y  =  <. f ,  .0.  >.
)  <->  ( ( f  e.  T  /\  ( R `  f )  .<_  X )  /\  Y  =  <. f ,  .0.  >.
) ) )
13 an13 806 . . . . . . . 8  |-  ( ( Y  =  <. f ,  s >.  /\  (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  X
)  /\  s  e.  {  .0.  } ) )  <-> 
( s  e.  {  .0.  }  /\  ( f  e.  ( ( (
DIsoA `  K ) `  W ) `  X
)  /\  Y  =  <. f ,  s >.
) ) )
14 elsn 4012 . . . . . . . . 9  |-  ( s  e.  {  .0.  }  <->  s  =  .0.  )
1514anbi1i 699 . . . . . . . 8  |-  ( ( s  e.  {  .0.  }  /\  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  X )  /\  Y  =  <. f ,  s >. )
)  <->  ( s  =  .0.  /\  ( f  e.  ( ( (
DIsoA `  K ) `  W ) `  X
)  /\  Y  =  <. f ,  s >.
) ) )
1613, 15bitri 252 . . . . . . 7  |-  ( ( Y  =  <. f ,  s >.  /\  (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  X
)  /\  s  e.  {  .0.  } ) )  <-> 
( s  =  .0. 
/\  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  X )  /\  Y  =  <. f ,  s >. )
) )
1716exbii 1712 . . . . . 6  |-  ( E. s ( Y  = 
<. f ,  s >.  /\  ( f  e.  ( ( ( DIsoA `  K
) `  W ) `  X )  /\  s  e.  {  .0.  } ) )  <->  E. s ( s  =  .0.  /\  (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  X
)  /\  Y  =  <. f ,  s >.
) ) )
18 fvex 5891 . . . . . . . . . 10  |-  ( (
LTrn `  K ) `  W )  e.  _V
194, 18eqeltri 2503 . . . . . . . . 9  |-  T  e. 
_V
2019mptex 6151 . . . . . . . 8  |-  ( g  e.  T  |->  (  _I  |`  B ) )  e. 
_V
215, 20eqeltri 2503 . . . . . . 7  |-  .0.  e.  _V
22 opeq2 4188 . . . . . . . . 9  |-  ( s  =  .0.  ->  <. f ,  s >.  =  <. f ,  .0.  >. )
2322eqeq2d 2436 . . . . . . . 8  |-  ( s  =  .0.  ->  ( Y  =  <. f ,  s >.  <->  Y  =  <. f ,  .0.  >. )
)
2423anbi2d 708 . . . . . . 7  |-  ( s  =  .0.  ->  (
( f  e.  ( ( ( DIsoA `  K
) `  W ) `  X )  /\  Y  =  <. f ,  s
>. )  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  X )  /\  Y  =  <. f ,  .0.  >. )
) )
2521, 24ceqsexv 3118 . . . . . 6  |-  ( E. s ( s  =  .0.  /\  ( f  e.  ( ( (
DIsoA `  K ) `  W ) `  X
)  /\  Y  =  <. f ,  s >.
) )  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  X )  /\  Y  =  <. f ,  .0.  >. )
)
2617, 25bitri 252 . . . . 5  |-  ( E. s ( Y  = 
<. f ,  s >.  /\  ( f  e.  ( ( ( DIsoA `  K
) `  W ) `  X )  /\  s  e.  {  .0.  } ) )  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  X )  /\  Y  =  <. f ,  .0.  >. )
)
27 anass 653 . . . . . 6  |-  ( ( ( f  e.  T  /\  Y  =  <. f ,  .0.  >. )  /\  ( R `  f
)  .<_  X )  <->  ( f  e.  T  /\  ( Y  =  <. f ,  .0.  >.  /\  ( R `  f )  .<_  X ) ) )
28 an32 805 . . . . . 6  |-  ( ( ( f  e.  T  /\  Y  =  <. f ,  .0.  >. )  /\  ( R `  f
)  .<_  X )  <->  ( (
f  e.  T  /\  ( R `  f ) 
.<_  X )  /\  Y  =  <. f ,  .0.  >.
) )
2927, 28bitr3i 254 . . . . 5  |-  ( ( f  e.  T  /\  ( Y  =  <. f ,  .0.  >.  /\  ( R `  f )  .<_  X ) )  <->  ( (
f  e.  T  /\  ( R `  f ) 
.<_  X )  /\  Y  =  <. f ,  .0.  >.
) )
3012, 26, 293bitr4g 291 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( E. s ( Y  = 
<. f ,  s >.  /\  ( f  e.  ( ( ( DIsoA `  K
) `  W ) `  X )  /\  s  e.  {  .0.  } ) )  <->  ( f  e.  T  /\  ( Y  =  <. f ,  .0.  >.  /\  ( R `  f
)  .<_  X ) ) ) )
3130exbidv 1762 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( E. f E. s ( Y  =  <. f ,  s >.  /\  (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  X
)  /\  s  e.  {  .0.  } ) )  <->  E. f ( f  e.  T  /\  ( Y  =  <. f ,  .0.  >.  /\  ( R `  f
)  .<_  X ) ) ) )
32 elxp 4870 . . 3  |-  ( Y  e.  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  {  .0.  } )  <->  E. f E. s
( Y  =  <. f ,  s >.  /\  (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  X
)  /\  s  e.  {  .0.  } ) ) )
33 df-rex 2777 . . 3  |-  ( E. f  e.  T  ( Y  =  <. f ,  .0.  >.  /\  ( R `  f )  .<_  X )  <->  E. f ( f  e.  T  /\  ( Y  =  <. f ,  .0.  >.  /\  ( R `  f
)  .<_  X ) ) )
3431, 32, 333bitr4g 291 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( Y  e.  ( (
( ( DIsoA `  K
) `  W ) `  X )  X.  {  .0.  } )  <->  E. f  e.  T  ( Y  =  <. f ,  .0.  >.  /\  ( R `  f
)  .<_  X ) ) )
359, 34bitrd 256 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( Y  e.  ( I `  X )  <->  E. f  e.  T  ( Y  =  <. f ,  .0.  >.  /\  ( R `  f
)  .<_  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1657    e. wcel 1872   E.wrex 2772   _Vcvv 3080   {csn 3998   <.cop 4004   class class class wbr 4423    |-> cmpt 4482    _I cid 4763    X. cxp 4851    |` cres 4855   ` cfv 5601   Basecbs 15120   lecple 15196   LHypclh 33518   LTrncltrn 33635   trLctrl 33693   DIsoAcdia 34565   DIsoBcdib 34675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-disoa 34566  df-dib 34676
This theorem is referenced by:  cdlemn11pre  34747  dihord2pre  34762
  Copyright terms: Public domain W3C validator