Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibeldmN Structured version   Unicode version

Theorem dibeldmN 35106
Description: Member of domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibfn.b  |-  B  =  ( Base `  K
)
dibfn.l  |-  .<_  =  ( le `  K )
dibfn.h  |-  H  =  ( LHyp `  K
)
dibfn.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibeldmN  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( X  e.  dom  I 
<->  ( X  e.  B  /\  X  .<_  W ) ) )

Proof of Theorem dibeldmN
StepHypRef Expression
1 dibfn.h . . . 4  |-  H  =  ( LHyp `  K
)
2 eqid 2451 . . . 4  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
3 dibfn.i . . . 4  |-  I  =  ( ( DIsoB `  K
) `  W )
41, 2, 3dibdiadm 35103 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  dom  ( ( DIsoA `  K
) `  W )
)
54eleq2d 2520 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( X  e.  dom  I 
<->  X  e.  dom  (
( DIsoA `  K ) `  W ) ) )
6 dibfn.b . . 3  |-  B  =  ( Base `  K
)
7 dibfn.l . . 3  |-  .<_  =  ( le `  K )
86, 7, 1, 2diaeldm 34984 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( X  e.  dom  ( ( DIsoA `  K
) `  W )  <->  ( X  e.  B  /\  X  .<_  W ) ) )
95, 8bitrd 253 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( X  e.  dom  I 
<->  ( X  e.  B  /\  X  .<_  W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   class class class wbr 4387   dom cdm 4935   ` cfv 5513   Basecbs 14273   lecple 14344   LHypclh 33931   DIsoAcdia 34976   DIsoBcdib 35086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4498  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-id 4731  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-disoa 34977  df-dib 35087
This theorem is referenced by:  dibf11N  35109  dibintclN  35115  dihmeetlem2N  35247
  Copyright terms: Public domain W3C validator