Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibdmN Structured version   Unicode version

Theorem dibdmN 35111
Description: Domain of the partial isomorphism A. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibfn.b  |-  B  =  ( Base `  K
)
dibfn.l  |-  .<_  =  ( le `  K )
dibfn.h  |-  H  =  ( LHyp `  K
)
dibfn.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibdmN  |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  {
x  e.  B  |  x  .<_  W } )
Distinct variable groups:    x,  .<_    x, B    x, K    x, W
Allowed substitution hints:    H( x)    I( x)    V( x)

Proof of Theorem dibdmN
StepHypRef Expression
1 dibfn.b . . 3  |-  B  =  ( Base `  K
)
2 dibfn.l . . 3  |-  .<_  =  ( le `  K )
3 dibfn.h . . 3  |-  H  =  ( LHyp `  K
)
4 dibfn.i . . 3  |-  I  =  ( ( DIsoB `  K
) `  W )
51, 2, 3, 4dibfnN 35110 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  Fn  { x  e.  B  |  x  .<_  W } )
6 fndm 5611 . 2  |-  ( I  Fn  { x  e.  B  |  x  .<_  W }  ->  dom  I  =  { x  e.  B  |  x  .<_  W }
)
75, 6syl 16 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  {
x  e.  B  |  x  .<_  W } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   {crab 2799   class class class wbr 4393   dom cdm 4941    Fn wfn 5514   ` cfv 5519   Basecbs 14285   lecple 14356   LHypclh 33937   DIsoBcdib 35092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-disoa 34983  df-dib 35093
This theorem is referenced by:  dibglbN  35120  dibintclN  35121  dihglblem3N  35249
  Copyright terms: Public domain W3C validator