Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibdiadm Structured version   Unicode version

Theorem dibdiadm 35827
Description: Domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.)
Hypotheses
Ref Expression
dibfna.h  |-  H  =  ( LHyp `  K
)
dibfna.j  |-  J  =  ( ( DIsoA `  K
) `  W )
dibfna.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibdiadm  |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  dom  J )

Proof of Theorem dibdiadm
StepHypRef Expression
1 dibfna.h . . 3  |-  H  =  ( LHyp `  K
)
2 dibfna.j . . 3  |-  J  =  ( ( DIsoA `  K
) `  W )
3 dibfna.i . . 3  |-  I  =  ( ( DIsoB `  K
) `  W )
41, 2, 3dibfna 35826 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  Fn  dom  J
)
5 fndm 5671 . 2  |-  ( I  Fn  dom  J  ->  dom  I  =  dom  J
)
64, 5syl 16 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  dom  J )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   dom cdm 4992    Fn wfn 5574   ` cfv 5579   LHypclh 34655   DIsoAcdia 35700   DIsoBcdib 35810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-dib 35811
This theorem is referenced by:  dibeldmN  35830  dibvalrel  35835
  Copyright terms: Public domain W3C validator