Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dib1dim Structured version   Unicode version

Theorem dib1dim 34807
Description: Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dib1dim.b  |-  B  =  ( Base `  K
)
dib1dim.h  |-  H  =  ( LHyp `  K
)
dib1dim.t  |-  T  =  ( ( LTrn `  K
) `  W )
dib1dim.r  |-  R  =  ( ( trL `  K
) `  W )
dib1dim.e  |-  E  =  ( ( TEndo `  K
) `  W )
dib1dim.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
dib1dim.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dib1dim  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  e.  ( T  X.  E )  |  E. s  e.  E  g  =  <. ( s `
 F ) ,  O >. } )
Distinct variable groups:    B, h    g, s, E    g, F, s    H, s    h, s, K    g, O, s    R, s    g, h, T, s    h, W, s
Allowed substitution hints:    B( g, s)    R( g, h)    E( h)    F( h)    H( g, h)    I(
g, h, s)    K( g)    O( h)    W( g)

Proof of Theorem dib1dim
Dummy variables  f 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dib1dim.b . . . . 5  |-  B  =  ( Base `  K
)
3 dib1dim.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 dib1dim.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
5 dib1dim.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
62, 3, 4, 5trlcl 33805 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  B
)
7 eqid 2441 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
87, 3, 4, 5trlle 33825 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F ) ( le
`  K ) W )
9 dib1dim.o . . . . 5  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
10 eqid 2441 . . . . 5  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
11 dib1dim.i . . . . 5  |-  I  =  ( ( DIsoB `  K
) `  W )
122, 7, 3, 4, 9, 10, 11dibval2 34786 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R `
 F )  e.  B  /\  ( R `
 F ) ( le `  K ) W ) )  -> 
( I `  ( R `  F )
)  =  ( ( ( ( DIsoA `  K
) `  W ) `  ( R `  F
) )  X.  { O } ) )
131, 6, 8, 12syl12anc 1216 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  ( ( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  X. 
{ O } ) )
14 relxp 4945 . . . 4  |-  Rel  (
( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  X. 
{ O } )
15 opelxp 4867 . . . . 5  |-  ( <.
f ,  t >.  e.  ( ( ( (
DIsoA `  K ) `  W ) `  ( R `  F )
)  X.  { O } )  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  /\  t  e.  { O } ) )
16 dib1dim.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
173, 4, 5, 16, 10dia1dim 34703 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( DIsoA `  K ) `  W ) `  ( R `  F )
)  =  { f  |  E. s  e.  E  f  =  ( s `  F ) } )
1817abeq2d 2550 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  <->  E. s  e.  E  f  =  ( s `  F
) ) )
1918anbi1d 704 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  ( R `  F )
)  /\  t  e.  { O } )  <->  ( E. s  e.  E  f  =  ( s `  F )  /\  t  e.  { O } ) ) )
203, 4, 16tendocl 34408 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( s `  F )  e.  T
)
21203expa 1187 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E )  /\  F  e.  T )  ->  (
s `  F )  e.  T )
2221an32s 802 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
s `  F )  e.  T )
232, 3, 4, 16, 9tendo0cl 34431 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
2423ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  O  e.  E )
2522, 24jca 532 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
( s `  F
)  e.  T  /\  O  e.  E )
)
26 eleq1 2501 . . . . . . . . . . 11  |-  ( f  =  ( s `  F )  ->  (
f  e.  T  <->  ( s `  F )  e.  T
) )
27 eleq1 2501 . . . . . . . . . . 11  |-  ( t  =  O  ->  (
t  e.  E  <->  O  e.  E ) )
2826, 27bi2anan9 868 . . . . . . . . . 10  |-  ( ( f  =  ( s `
 F )  /\  t  =  O )  ->  ( ( f  e.  T  /\  t  e.  E )  <->  ( (
s `  F )  e.  T  /\  O  e.  E ) ) )
2925, 28syl5ibrcom 222 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
( f  =  ( s `  F )  /\  t  =  O )  ->  ( f  e.  T  /\  t  e.  E ) ) )
3029rexlimdva 2839 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. s  e.  E  (
f  =  ( s `
 F )  /\  t  =  O )  ->  ( f  e.  T  /\  t  e.  E
) ) )
3130pm4.71rd 635 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. s  e.  E  (
f  =  ( s `
 F )  /\  t  =  O )  <->  ( ( f  e.  T  /\  t  e.  E
)  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) ) )
32 elsn 3889 . . . . . . . . 9  |-  ( t  e.  { O }  <->  t  =  O )
3332anbi2i 694 . . . . . . . 8  |-  ( ( E. s  e.  E  f  =  ( s `  F )  /\  t  e.  { O } )  <-> 
( E. s  e.  E  f  =  ( s `  F )  /\  t  =  O ) )
34 r19.41v 2871 . . . . . . . 8  |-  ( E. s  e.  E  ( f  =  ( s `
 F )  /\  t  =  O )  <->  ( E. s  e.  E  f  =  ( s `  F )  /\  t  =  O ) )
3533, 34bitr4i 252 . . . . . . 7  |-  ( ( E. s  e.  E  f  =  ( s `  F )  /\  t  e.  { O } )  <->  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) )
36 df-3an 967 . . . . . . 7  |-  ( ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `
 F )  /\  t  =  O )
)  <->  ( ( f  e.  T  /\  t  e.  E )  /\  E. s  e.  E  (
f  =  ( s `
 F )  /\  t  =  O )
) )
3731, 35, 363bitr4g 288 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( E. s  e.  E  f  =  ( s `  F )  /\  t  e.  { O } )  <-> 
( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) ) )
3819, 37bitrd 253 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  ( R `  F )
)  /\  t  e.  { O } )  <->  ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) ) )
3915, 38syl5bb 257 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( <. f ,  t >.  e.  ( ( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  X. 
{ O } )  <-> 
( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) ) )
4014, 39opabbi2dv 4987 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( ( DIsoA `  K
) `  W ) `  ( R `  F
) )  X.  { O } )  =  { <. f ,  t >.  |  ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) } )
4113, 40eqtrd 2473 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  { <. f ,  t >.  |  ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) } )
42 eqeq1 2447 . . . . 5  |-  ( g  =  <. f ,  t
>.  ->  ( g  = 
<. ( s `  F
) ,  O >.  <->  <. f ,  t >.  =  <. ( s `  F ) ,  O >. )
)
43 vex 2973 . . . . . 6  |-  f  e. 
_V
44 vex 2973 . . . . . 6  |-  t  e. 
_V
4543, 44opth 4564 . . . . 5  |-  ( <.
f ,  t >.  =  <. ( s `  F ) ,  O >.  <-> 
( f  =  ( s `  F )  /\  t  =  O ) )
4642, 45syl6bb 261 . . . 4  |-  ( g  =  <. f ,  t
>.  ->  ( g  = 
<. ( s `  F
) ,  O >.  <->  (
f  =  ( s `
 F )  /\  t  =  O )
) )
4746rexbidv 2734 . . 3  |-  ( g  =  <. f ,  t
>.  ->  ( E. s  e.  E  g  =  <. ( s `  F
) ,  O >.  <->  E. s  e.  E  (
f  =  ( s `
 F )  /\  t  =  O )
) )
4847rabxp 4873 . 2  |-  { g  e.  ( T  X.  E )  |  E. s  e.  E  g  =  <. ( s `  F ) ,  O >. }  =  { <. f ,  t >.  |  ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `
 F )  /\  t  =  O )
) }
4941, 48syl6eqr 2491 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  e.  ( T  X.  E )  |  E. s  e.  E  g  =  <. ( s `
 F ) ,  O >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2714   {crab 2717   {csn 3875   <.cop 3881   class class class wbr 4290   {copab 4347    e. cmpt 4348    _I cid 4629    X. cxp 4836    |` cres 4840   ` cfv 5416   Basecbs 14172   lecple 14243   HLchlt 32992   LHypclh 33625   LTrncltrn 33742   trLctrl 33799   TEndoctendo 34393   DIsoAcdia 34670   DIsoBcdib 34780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-riotaBAD 32601
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-1st 6575  df-2nd 6576  df-undef 6790  df-map 7214  df-poset 15114  df-plt 15126  df-lub 15142  df-glb 15143  df-join 15144  df-meet 15145  df-p0 15207  df-p1 15208  df-lat 15214  df-clat 15276  df-oposet 32818  df-ol 32820  df-oml 32821  df-covers 32908  df-ats 32909  df-atl 32940  df-cvlat 32964  df-hlat 32993  df-llines 33139  df-lplanes 33140  df-lvols 33141  df-lines 33142  df-psubsp 33144  df-pmap 33145  df-padd 33437  df-lhyp 33629  df-laut 33630  df-ldil 33745  df-ltrn 33746  df-trl 33800  df-tendo 34396  df-disoa 34671  df-dib 34781
This theorem is referenced by:  dib1dim2  34810
  Copyright terms: Public domain W3C validator