Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaintclN Structured version   Unicode version

Theorem diaintclN 34708
Description: The intersection of partial isomorphism A closed subspaces is a closed subspace. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaintcl.h  |-  H  =  ( LHyp `  K
)
diaintcl.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diaintclN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| S  e.  ran  I )

Proof of Theorem diaintclN
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diaintcl.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
2 diaintcl.i . . . . . . . 8  |-  I  =  ( ( DIsoA `  K
) `  W )
31, 2diaf11N 34699 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )
43adantr 465 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I : dom  I -1-1-onto-> ran  I )
5 f1ofn 5647 . . . . . 6  |-  ( I : dom  I -1-1-onto-> ran  I  ->  I  Fn  dom  I
)
64, 5syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I  Fn  dom  I )
7 cnvimass 5194 . . . . 5  |-  ( `' I " S ) 
C_  dom  I
8 fnssres 5529 . . . . 5  |-  ( ( I  Fn  dom  I  /\  ( `' I " S )  C_  dom  I )  ->  (
I  |`  ( `' I " S ) )  Fn  ( `' I " S ) )
96, 7, 8sylancl 662 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I  |`  ( `' I " S ) )  Fn  ( `' I " S ) )
10 fniinfv 5755 . . . 4  |-  ( ( I  |`  ( `' I " S ) )  Fn  ( `' I " S )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| ran  ( I  |`  ( `' I " S ) ) )
119, 10syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| ran  ( I  |`  ( `' I " S ) ) )
12 df-ima 4858 . . . . 5  |-  ( I
" ( `' I " S ) )  =  ran  ( I  |`  ( `' I " S ) )
13 f1ofo 5653 . . . . . . . 8  |-  ( I : dom  I -1-1-onto-> ran  I  ->  I : dom  I -onto-> ran  I )
143, 13syl 16 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -onto-> ran  I )
1514adantr 465 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I : dom  I -onto-> ran  I
)
16 simprl 755 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  S  C_ 
ran  I )
17 foimacnv 5663 . . . . . 6  |-  ( ( I : dom  I -onto-> ran  I  /\  S  C_  ran  I )  ->  (
I " ( `' I " S ) )  =  S )
1815, 16, 17syl2anc 661 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I " ( `' I " S ) )  =  S )
1912, 18syl5eqr 2489 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ran  ( I  |`  ( `' I " S ) )  =  S )
2019inteqd 4138 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| ran  ( I  |`  ( `' I " S ) )  =  |^| S
)
2111, 20eqtrd 2475 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| S )
22 simpl 457 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
237a1i 11 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  dom  I )
24 simprr 756 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
25 n0 3651 . . . . . . 7  |-  ( S  =/=  (/)  <->  E. y  y  e.  S )
2624, 25sylib 196 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  E. y 
y  e.  S )
2716sselda 3361 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  y  e.  ran  I
)
283ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  I : dom  I -1-1-onto-> ran  I )
2928, 5syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  I  Fn  dom  I
)
30 fvelrnb 5744 . . . . . . . . 9  |-  ( I  Fn  dom  I  -> 
( y  e.  ran  I 
<->  E. x  e.  dom  I ( I `  x )  =  y ) )
3129, 30syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( y  e.  ran  I 
<->  E. x  e.  dom  I ( I `  x )  =  y ) )
3227, 31mpbid 210 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  E. x  e.  dom  I ( I `  x )  =  y )
33 f1ofun 5648 . . . . . . . . . . . . . . . 16  |-  ( I : dom  I -1-1-onto-> ran  I  ->  Fun  I )
343, 33syl 16 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Fun  I )
3534adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  Fun  I )
36 fvimacnv 5823 . . . . . . . . . . . . . 14  |-  ( ( Fun  I  /\  x  e.  dom  I )  -> 
( ( I `  x )  e.  S  <->  x  e.  ( `' I " S ) ) )
3735, 36sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  x  e.  dom  I )  ->  ( ( I `
 x )  e.  S  <->  x  e.  ( `' I " S ) ) )
38 ne0i 3648 . . . . . . . . . . . . 13  |-  ( x  e.  ( `' I " S )  ->  ( `' I " S )  =/=  (/) )
3937, 38syl6bi 228 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  x  e.  dom  I )  ->  ( ( I `
 x )  e.  S  ->  ( `' I " S )  =/=  (/) ) )
4039ex 434 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
x  e.  dom  I  ->  ( ( I `  x )  e.  S  ->  ( `' I " S )  =/=  (/) ) ) )
41 eleq1 2503 . . . . . . . . . . . . 13  |-  ( ( I `  x )  =  y  ->  (
( I `  x
)  e.  S  <->  y  e.  S ) )
4241biimprd 223 . . . . . . . . . . . 12  |-  ( ( I `  x )  =  y  ->  (
y  e.  S  -> 
( I `  x
)  e.  S ) )
4342imim1d 75 . . . . . . . . . . 11  |-  ( ( I `  x )  =  y  ->  (
( ( I `  x )  e.  S  ->  ( `' I " S )  =/=  (/) )  -> 
( y  e.  S  ->  ( `' I " S )  =/=  (/) ) ) )
4440, 43syl9 71 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( I `  x
)  =  y  -> 
( x  e.  dom  I  ->  ( y  e.  S  ->  ( `' I " S )  =/=  (/) ) ) ) )
4544com24 87 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
y  e.  S  -> 
( x  e.  dom  I  ->  ( ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) ) ) )
4645imp 429 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( x  e.  dom  I  ->  ( ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) ) )
4746rexlimdv 2845 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( E. x  e. 
dom  I ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) )
4832, 47mpd 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( `' I " S )  =/=  (/) )
4926, 48exlimddv 1692 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S )  =/=  (/) )
50 eqid 2443 . . . . . 6  |-  ( glb `  K )  =  ( glb `  K )
5150, 1, 2diaglbN 34705 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( `' I " S ) 
C_  dom  I  /\  ( `' I " S )  =/=  (/) ) )  -> 
( I `  (
( glb `  K
) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( I `
 y ) )
5222, 23, 49, 51syl12anc 1216 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( I `  y ) )
53 fvres 5709 . . . . 5  |-  ( y  e.  ( `' I " S )  ->  (
( I  |`  ( `' I " S ) ) `  y )  =  ( I `  y ) )
5453iineq2i 4195 . . . 4  |-  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^|_ y  e.  ( `' I " S ) ( I `  y
)
5552, 54syl6eqr 2493 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `  y ) )
56 hlclat 33008 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  CLat )
5756ad2antrr 725 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  K  e.  CLat )
58 eqid 2443 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
59 eqid 2443 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
6058, 59, 1, 2diadm 34685 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  =  {
x  e.  ( Base `  K )  |  x ( le `  K
) W } )
61 ssrab2 3442 . . . . . . . . 9  |-  { x  e.  ( Base `  K
)  |  x ( le `  K ) W }  C_  ( Base `  K )
6260, 61syl6eqss 3411 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  C_  ( Base `  K ) )
6362adantr 465 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  dom  I  C_  ( Base `  K
) )
647, 63syl5ss 3372 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  ( Base `  K
) )
6558, 50clatglbcl 15289 . . . . . 6  |-  ( ( K  e.  CLat  /\  ( `' I " S ) 
C_  ( Base `  K
) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
) )
6657, 64, 65syl2anc 661 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
) )
67 n0 3651 . . . . . . 7  |-  ( ( `' I " S )  =/=  (/)  <->  E. y  y  e.  ( `' I " S ) )
6849, 67sylib 196 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  E. y 
y  e.  ( `' I " S ) )
69 hllat 33013 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
7069ad3antrrr 729 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  K  e.  Lat )
7166adantr 465 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) )  e.  ( Base `  K ) )
7264sselda 3361 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y  e.  (
Base `  K )
)
7358, 1lhpbase 33647 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
7473ad3antlr 730 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  W  e.  (
Base `  K )
)
7556ad3antrrr 729 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  K  e.  CLat )
7660adantr 465 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  dom  I  =  { x  e.  ( Base `  K
)  |  x ( le `  K ) W } )
777, 76syl5sseq 3409 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  { x  e.  ( Base `  K
)  |  x ( le `  K ) W } )
7877, 61syl6ss 3373 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  ( Base `  K
) )
7978adantr 465 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( `' I " S )  C_  ( Base `  K ) )
80 simpr 461 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y  e.  ( `' I " S ) )
8158, 59, 50clatglble 15300 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  ( `' I " S ) 
C_  ( Base `  K
)  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) y )
8275, 79, 80, 81syl3anc 1218 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) y )
837sseli 3357 . . . . . . . . . 10  |-  ( y  e.  ( `' I " S )  ->  y  e.  dom  I )
8483adantl 466 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y  e.  dom  I )
8558, 59, 1, 2diaeldm 34686 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( y  e.  dom  I 
<->  ( y  e.  (
Base `  K )  /\  y ( le `  K ) W ) ) )
8685ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( y  e. 
dom  I  <->  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) ) )
8784, 86mpbid 210 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )
8887simprd 463 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  y ( le
`  K ) W )
8958, 59, 70, 71, 72, 74, 82, 88lattrd 15233 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  ( `' I " S ) )  ->  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W )
9068, 89exlimddv 1692 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) ) ( le `  K
) W )
9158, 59, 1, 2diaeldm 34686 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( glb `  K ) `  ( `' I " S ) )  e.  dom  I  <->  ( ( ( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
)  /\  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W ) ) )
9291adantr 465 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( ( glb `  K
) `  ( `' I " S ) )  e.  dom  I  <->  ( (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
)  /\  ( ( glb `  K ) `  ( `' I " S ) ) ( le `  K ) W ) ) )
9366, 90, 92mpbir2and 913 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  dom  I )
941, 2diaclN 34700 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( glb `  K ) `  ( `' I " S ) )  e.  dom  I
)  ->  ( I `  ( ( glb `  K
) `  ( `' I " S ) ) )  e.  ran  I
)
9593, 94syldan 470 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  e.  ran  I )
9655, 95eqeltrrd 2518 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  e. 
ran  I )
9721, 96eqeltrrd 2518 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| S  e.  ran  I )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2611   E.wrex 2721   {crab 2724    C_ wss 3333   (/)c0 3642   |^|cint 4133   |^|_ciin 4177   class class class wbr 4297   `'ccnv 4844   dom cdm 4845   ran crn 4846    |` cres 4847   "cima 4848   Fun wfun 5417    Fn wfn 5418   -onto->wfo 5421   -1-1-onto->wf1o 5422   ` cfv 5423   Basecbs 14179   lecple 14250   glbcglb 15118   Latclat 15220   CLatccla 15282   HLchlt 33000   LHypclh 33633   DIsoAcdia 34678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-riotaBAD 32609
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-undef 6797  df-map 7221  df-poset 15121  df-plt 15133  df-lub 15149  df-glb 15150  df-join 15151  df-meet 15152  df-p0 15214  df-p1 15215  df-lat 15221  df-clat 15283  df-oposet 32826  df-ol 32828  df-oml 32829  df-covers 32916  df-ats 32917  df-atl 32948  df-cvlat 32972  df-hlat 33001  df-llines 33147  df-lplanes 33148  df-lvols 33149  df-lines 33150  df-psubsp 33152  df-pmap 33153  df-padd 33445  df-lhyp 33637  df-laut 33638  df-ldil 33753  df-ltrn 33754  df-trl 33808  df-disoa 34679
This theorem is referenced by:  docaclN  34774
  Copyright terms: Public domain W3C validator