Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaglbN Structured version   Unicode version

Theorem diaglbN 34075
Description: Partial isomorphism A of a lattice glb. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaglb.g  |-  G  =  ( glb `  K
)
diaglb.h  |-  H  =  ( LHyp `  K
)
diaglb.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diaglbN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
I `  ( G `  S ) )  = 
|^|_ x  e.  S  ( I `  x
) )
Distinct variable groups:    x, G    x, H    x, I    x, K    x, S    x, W

Proof of Theorem diaglbN
Dummy variables  f 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 455 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 hlclat 32376 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CLat )
32ad2antrr 724 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  K  e.  CLat )
4 eqid 2402 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
5 eqid 2402 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
6 diaglb.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
7 diaglb.i . . . . . . . . . 10  |-  I  =  ( ( DIsoA `  K
) `  W )
84, 5, 6, 7diadm 34055 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  =  {
y  e.  ( Base `  K )  |  y ( le `  K
) W } )
98sseq2d 3470 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( S  C_  dom  I 
<->  S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } ) )
109biimpa 482 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  dom  I )  ->  S  C_ 
{ y  e.  (
Base `  K )  |  y ( le
`  K ) W } )
1110adantrr 715 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  S  C_ 
{ y  e.  (
Base `  K )  |  y ( le
`  K ) W } )
12 ssrab2 3524 . . . . . 6  |-  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  C_  ( Base `  K )
1311, 12syl6ss 3454 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  S  C_  ( Base `  K
) )
14 diaglb.g . . . . . 6  |-  G  =  ( glb `  K
)
154, 14clatglbcl 16068 . . . . 5  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
) )  ->  ( G `  S )  e.  ( Base `  K
) )
163, 13, 15syl2anc 659 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( G `  S )  e.  ( Base `  K
) )
17 simprr 758 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
18 n0 3748 . . . . . 6  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
1917, 18sylib 196 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  E. x  x  e.  S )
20 hllat 32381 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
2120ad3antrrr 728 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  K  e.  Lat )
2216adantr 463 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
)  e.  ( Base `  K ) )
23 ssel2 3437 . . . . . . . . . 10  |-  ( ( S  C_  dom  I  /\  x  e.  S )  ->  x  e.  dom  I
)
2423adantlr 713 . . . . . . . . 9  |-  ( ( ( S  C_  dom  I  /\  S  =/=  (/) )  /\  x  e.  S )  ->  x  e.  dom  I
)
2524adantll 712 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  dom  I
)
264, 5, 6, 7diaeldm 34056 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( x  e.  dom  I 
<->  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) ) )
2726ad2antrr 724 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( x  e.  dom  I 
<->  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) ) )
2825, 27mpbid 210 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) )
2928simpld 457 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  ( Base `  K ) )
304, 6lhpbase 33015 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3130ad3antlr 729 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  W  e.  ( Base `  K ) )
322ad3antrrr 728 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  K  e.  CLat )
3313adantr 463 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  S  C_  ( Base `  K ) )
34 simpr 459 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  S )
354, 5, 14clatglble 16079 . . . . . . 7  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
)  /\  x  e.  S )  ->  ( G `  S )
( le `  K
) x )
3632, 33, 34, 35syl3anc 1230 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
) ( le `  K ) x )
3728simprd 461 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x ( le `  K ) W )
384, 5, 21, 22, 29, 31, 36, 37lattrd 16012 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
) ( le `  K ) W )
3919, 38exlimddv 1747 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( G `  S )
( le `  K
) W )
40 eqid 2402 . . . . 5  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
41 eqid 2402 . . . . 5  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
424, 5, 6, 40, 41, 7diaelval 34053 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( G `
 S )  e.  ( Base `  K
)  /\  ( G `  S ) ( le
`  K ) W ) )  ->  (
f  e.  ( I `
 ( G `  S ) )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) ( G `  S ) ) ) )
431, 16, 39, 42syl12anc 1228 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
f  e.  ( I `
 ( G `  S ) )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) ( G `  S ) ) ) )
44 r19.28zv 3868 . . . . . 6  |-  ( S  =/=  (/)  ->  ( A. x  e.  S  (
f  e.  ( (
LTrn `  K ) `  W )  /\  (
( ( trL `  K
) `  W ) `  f ) ( le
`  K ) x )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  A. x  e.  S  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) ) )
4544ad2antll 727 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( A. x  e.  S  ( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  A. x  e.  S  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) ) )
46 simpll 752 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( K  e.  HL  /\  W  e.  H ) )
474, 5, 6, 40, 41, 7diaelval 34053 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W ) )  ->  (
f  e.  ( I `
 x )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) ) )
4846, 28, 47syl2anc 659 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( f  e.  ( I `  x )  <-> 
( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) ) )
4948ralbidva 2840 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( A. x  e.  S  f  e.  ( I `  x )  <->  A. x  e.  S  ( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) ) )
502ad3antrrr 728 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  f  e.  ( ( LTrn `  K ) `  W ) )  ->  K  e.  CLat )
514, 6, 40, 41trlcl 33182 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( ( LTrn `  K
) `  W )
)  ->  ( (
( trL `  K
) `  W ) `  f )  e.  (
Base `  K )
)
5251adantlr 713 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  f  e.  ( ( LTrn `  K ) `  W ) )  -> 
( ( ( trL `  K ) `  W
) `  f )  e.  ( Base `  K
) )
5313adantr 463 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  f  e.  ( ( LTrn `  K ) `  W ) )  ->  S  C_  ( Base `  K
) )
544, 5, 14clatleglb 16080 . . . . . . 7  |-  ( ( K  e.  CLat  /\  (
( ( trL `  K
) `  W ) `  f )  e.  (
Base `  K )  /\  S  C_  ( Base `  K ) )  -> 
( ( ( ( trL `  K ) `
 W ) `  f ) ( le
`  K ) ( G `  S )  <->  A. x  e.  S  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) )
5550, 52, 53, 54syl3anc 1230 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  f  e.  ( ( LTrn `  K ) `  W ) )  -> 
( ( ( ( trL `  K ) `
 W ) `  f ) ( le
`  K ) ( G `  S )  <->  A. x  e.  S  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) )
5655pm5.32da 639 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) ( G `  S ) )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  A. x  e.  S  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) ) )
5745, 49, 563bitr4rd 286 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) ( G `  S ) )  <->  A. x  e.  S  f  e.  ( I `  x
) ) )
58 vex 3062 . . . . 5  |-  f  e. 
_V
59 eliin 4277 . . . . 5  |-  ( f  e.  _V  ->  (
f  e.  |^|_ x  e.  S  ( I `  x )  <->  A. x  e.  S  f  e.  ( I `  x
) ) )
6058, 59ax-mp 5 . . . 4  |-  ( f  e.  |^|_ x  e.  S  ( I `  x
)  <->  A. x  e.  S  f  e.  ( I `  x ) )
6157, 60syl6bbr 263 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) ( G `  S ) )  <->  f  e.  |^|_
x  e.  S  ( I `  x ) ) )
6243, 61bitrd 253 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
f  e.  ( I `
 ( G `  S ) )  <->  f  e.  |^|_
x  e.  S  ( I `  x ) ) )
6362eqrdv 2399 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
I `  ( G `  S ) )  = 
|^|_ x  e.  S  ( I `  x
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405   E.wex 1633    e. wcel 1842    =/= wne 2598   A.wral 2754   {crab 2758   _Vcvv 3059    C_ wss 3414   (/)c0 3738   |^|_ciin 4272   class class class wbr 4395   dom cdm 4823   ` cfv 5569   Basecbs 14841   lecple 14916   glbcglb 15896   Latclat 15999   CLatccla 16061   HLchlt 32368   LHypclh 33001   LTrncltrn 33118   trLctrl 33176   DIsoAcdia 34048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-map 7459  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-p1 15994  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-lhyp 33005  df-laut 33006  df-ldil 33121  df-ltrn 33122  df-trl 33177  df-disoa 34049
This theorem is referenced by:  diameetN  34076  diaintclN  34078  dibglbN  34186
  Copyright terms: Public domain W3C validator