Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaglbN Structured version   Visualization version   Unicode version

Theorem diaglbN 34668
Description: Partial isomorphism A of a lattice glb. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaglb.g  |-  G  =  ( glb `  K
)
diaglb.h  |-  H  =  ( LHyp `  K
)
diaglb.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diaglbN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
I `  ( G `  S ) )  = 
|^|_ x  e.  S  ( I `  x
) )
Distinct variable groups:    x, G    x, H    x, I    x, K    x, S    x, W

Proof of Theorem diaglbN
Dummy variables  f 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 463 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 hlclat 32969 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CLat )
32ad2antrr 737 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  K  e.  CLat )
4 eqid 2462 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
5 eqid 2462 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
6 diaglb.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
7 diaglb.i . . . . . . . . . 10  |-  I  =  ( ( DIsoA `  K
) `  W )
84, 5, 6, 7diadm 34648 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  =  {
y  e.  ( Base `  K )  |  y ( le `  K
) W } )
98sseq2d 3472 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( S  C_  dom  I 
<->  S  C_  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } ) )
109biimpa 491 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  dom  I )  ->  S  C_ 
{ y  e.  (
Base `  K )  |  y ( le
`  K ) W } )
1110adantrr 728 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  S  C_ 
{ y  e.  (
Base `  K )  |  y ( le
`  K ) W } )
12 ssrab2 3526 . . . . . 6  |-  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  C_  ( Base `  K )
1311, 12syl6ss 3456 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  S  C_  ( Base `  K
) )
14 diaglb.g . . . . . 6  |-  G  =  ( glb `  K
)
154, 14clatglbcl 16409 . . . . 5  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
) )  ->  ( G `  S )  e.  ( Base `  K
) )
163, 13, 15syl2anc 671 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( G `  S )  e.  ( Base `  K
) )
17 simprr 771 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
18 n0 3753 . . . . . 6  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
1917, 18sylib 201 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  E. x  x  e.  S )
20 hllat 32974 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
2120ad3antrrr 741 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  K  e.  Lat )
2216adantr 471 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
)  e.  ( Base `  K ) )
23 ssel2 3439 . . . . . . . . . 10  |-  ( ( S  C_  dom  I  /\  x  e.  S )  ->  x  e.  dom  I
)
2423adantlr 726 . . . . . . . . 9  |-  ( ( ( S  C_  dom  I  /\  S  =/=  (/) )  /\  x  e.  S )  ->  x  e.  dom  I
)
2524adantll 725 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  dom  I
)
264, 5, 6, 7diaeldm 34649 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( x  e.  dom  I 
<->  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) ) )
2726ad2antrr 737 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( x  e.  dom  I 
<->  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) ) )
2825, 27mpbid 215 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) )
2928simpld 465 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  ( Base `  K ) )
304, 6lhpbase 33608 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3130ad3antlr 742 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  W  e.  ( Base `  K ) )
322ad3antrrr 741 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  K  e.  CLat )
3313adantr 471 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  S  C_  ( Base `  K ) )
34 simpr 467 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  S )
354, 5, 14clatglble 16420 . . . . . . 7  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
)  /\  x  e.  S )  ->  ( G `  S )
( le `  K
) x )
3632, 33, 34, 35syl3anc 1276 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
) ( le `  K ) x )
3728simprd 469 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x ( le `  K ) W )
384, 5, 21, 22, 29, 31, 36, 37lattrd 16353 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
) ( le `  K ) W )
3919, 38exlimddv 1792 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( G `  S )
( le `  K
) W )
40 eqid 2462 . . . . 5  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
41 eqid 2462 . . . . 5  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
424, 5, 6, 40, 41, 7diaelval 34646 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( G `
 S )  e.  ( Base `  K
)  /\  ( G `  S ) ( le
`  K ) W ) )  ->  (
f  e.  ( I `
 ( G `  S ) )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) ( G `  S ) ) ) )
431, 16, 39, 42syl12anc 1274 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
f  e.  ( I `
 ( G `  S ) )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) ( G `  S ) ) ) )
44 r19.28zv 3876 . . . . . 6  |-  ( S  =/=  (/)  ->  ( A. x  e.  S  (
f  e.  ( (
LTrn `  K ) `  W )  /\  (
( ( trL `  K
) `  W ) `  f ) ( le
`  K ) x )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  A. x  e.  S  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) ) )
4544ad2antll 740 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( A. x  e.  S  ( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  A. x  e.  S  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) ) )
46 simpll 765 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( K  e.  HL  /\  W  e.  H ) )
474, 5, 6, 40, 41, 7diaelval 34646 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W ) )  ->  (
f  e.  ( I `
 x )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) ) )
4846, 28, 47syl2anc 671 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( f  e.  ( I `  x )  <-> 
( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) ) )
4948ralbidva 2836 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( A. x  e.  S  f  e.  ( I `  x )  <->  A. x  e.  S  ( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) ) )
502ad3antrrr 741 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  f  e.  ( ( LTrn `  K ) `  W ) )  ->  K  e.  CLat )
514, 6, 40, 41trlcl 33775 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( ( LTrn `  K
) `  W )
)  ->  ( (
( trL `  K
) `  W ) `  f )  e.  (
Base `  K )
)
5251adantlr 726 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  f  e.  ( ( LTrn `  K ) `  W ) )  -> 
( ( ( trL `  K ) `  W
) `  f )  e.  ( Base `  K
) )
5313adantr 471 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  f  e.  ( ( LTrn `  K ) `  W ) )  ->  S  C_  ( Base `  K
) )
544, 5, 14clatleglb 16421 . . . . . . 7  |-  ( ( K  e.  CLat  /\  (
( ( trL `  K
) `  W ) `  f )  e.  (
Base `  K )  /\  S  C_  ( Base `  K ) )  -> 
( ( ( ( trL `  K ) `
 W ) `  f ) ( le
`  K ) ( G `  S )  <->  A. x  e.  S  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) )
5550, 52, 53, 54syl3anc 1276 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  /\  f  e.  ( ( LTrn `  K ) `  W ) )  -> 
( ( ( ( trL `  K ) `
 W ) `  f ) ( le
`  K ) ( G `  S )  <->  A. x  e.  S  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) )
5655pm5.32da 651 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) ( G `  S ) )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  A. x  e.  S  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) x ) ) )
5745, 49, 563bitr4rd 294 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) ( G `  S ) )  <->  A. x  e.  S  f  e.  ( I `  x
) ) )
58 vex 3060 . . . . 5  |-  f  e. 
_V
59 eliin 4298 . . . . 5  |-  ( f  e.  _V  ->  (
f  e.  |^|_ x  e.  S  ( I `  x )  <->  A. x  e.  S  f  e.  ( I `  x
) ) )
6058, 59ax-mp 5 . . . 4  |-  ( f  e.  |^|_ x  e.  S  ( I `  x
)  <->  A. x  e.  S  f  e.  ( I `  x ) )
6157, 60syl6bbr 271 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
( f  e.  ( ( LTrn `  K
) `  W )  /\  ( ( ( trL `  K ) `  W
) `  f )
( le `  K
) ( G `  S ) )  <->  f  e.  |^|_
x  e.  S  ( I `  x ) ) )
6243, 61bitrd 261 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
f  e.  ( I `
 ( G `  S ) )  <->  f  e.  |^|_
x  e.  S  ( I `  x ) ) )
6362eqrdv 2460 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  (
I `  ( G `  S ) )  = 
|^|_ x  e.  S  ( I `  x
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455   E.wex 1674    e. wcel 1898    =/= wne 2633   A.wral 2749   {crab 2753   _Vcvv 3057    C_ wss 3416   (/)c0 3743   |^|_ciin 4293   class class class wbr 4416   dom cdm 4853   ` cfv 5601   Basecbs 15170   lecple 15246   glbcglb 16237   Latclat 16340   CLatccla 16402   HLchlt 32961   LHypclh 33594   LTrncltrn 33711   trLctrl 33769   DIsoAcdia 34641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-iin 4295  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-map 7500  df-preset 16222  df-poset 16240  df-plt 16253  df-lub 16269  df-glb 16270  df-join 16271  df-meet 16272  df-p0 16334  df-p1 16335  df-lat 16341  df-clat 16403  df-oposet 32787  df-ol 32789  df-oml 32790  df-covers 32877  df-ats 32878  df-atl 32909  df-cvlat 32933  df-hlat 32962  df-lhyp 33598  df-laut 33599  df-ldil 33714  df-ltrn 33715  df-trl 33770  df-disoa 34642
This theorem is referenced by:  diameetN  34669  diaintclN  34671  dibglbN  34779
  Copyright terms: Public domain W3C validator