Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaf11N Structured version   Unicode version

Theorem diaf11N 35723
Description: The partial isomorphism A for a lattice  K is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1o.h  |-  H  =  ( LHyp `  K
)
dia1o.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diaf11N  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )

Proof of Theorem diaf11N
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2462 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
2 eqid 2462 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
3 dia1o.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dia1o.i . . . 4  |-  I  =  ( ( DIsoA `  K
) `  W )
51, 2, 3, 4diafn 35708 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I  Fn  { x  e.  ( Base `  K
)  |  x ( le `  K ) W } )
6 fnfun 5671 . . . 4  |-  ( I  Fn  { x  e.  ( Base `  K
)  |  x ( le `  K ) W }  ->  Fun  I )
7 funfn 5610 . . . 4  |-  ( Fun  I  <->  I  Fn  dom  I )
86, 7sylib 196 . . 3  |-  ( I  Fn  { x  e.  ( Base `  K
)  |  x ( le `  K ) W }  ->  I  Fn  dom  I )
95, 8syl 16 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I  Fn  dom  I
)
10 eqidd 2463 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ran  I  =  ran  I )
111, 2, 3, 4diaeldm 35710 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( x  e.  dom  I 
<->  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) ) )
121, 2, 3, 4diaeldm 35710 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( y  e.  dom  I 
<->  ( y  e.  (
Base `  K )  /\  y ( le `  K ) W ) ) )
1311, 12anbi12d 710 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( x  e. 
dom  I  /\  y  e.  dom  I )  <->  ( (
x  e.  ( Base `  K )  /\  x
( le `  K
) W )  /\  ( y  e.  (
Base `  K )  /\  y ( le `  K ) W ) ) ) )
141, 2, 3, 4dia11N 35722 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  /\  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )  ->  (
( I `  x
)  =  ( I `
 y )  <->  x  =  y ) )
1514biimpd 207 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  /\  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )  ->  (
( I `  x
)  =  ( I `
 y )  ->  x  =  y )
)
16153expib 1194 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  /\  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )  ->  (
( I `  x
)  =  ( I `
 y )  ->  x  =  y )
) )
1713, 16sylbid 215 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( x  e. 
dom  I  /\  y  e.  dom  I )  -> 
( ( I `  x )  =  ( I `  y )  ->  x  =  y ) ) )
1817ralrimivv 2879 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  A. x  e.  dom  I A. y  e.  dom  I ( ( I `
 x )  =  ( I `  y
)  ->  x  =  y ) )
19 dff1o6 6162 . 2  |-  ( I : dom  I -1-1-onto-> ran  I  <->  ( I  Fn  dom  I  /\  ran  I  =  ran  I  /\  A. x  e. 
dom  I A. y  e.  dom  I ( ( I `  x )  =  ( I `  y )  ->  x  =  y ) ) )
209, 10, 18, 19syl3anbrc 1175 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2809   {crab 2813   class class class wbr 4442   dom cdm 4994   ran crn 4995   Fun wfun 5575    Fn wfn 5576   -1-1-onto->wf1o 5580   ` cfv 5581   Basecbs 14481   lecple 14553   HLchlt 34024   LHypclh 34657   DIsoAcdia 35702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-riotaBAD 33633
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-iin 4323  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6776  df-2nd 6777  df-undef 6994  df-map 7414  df-poset 15424  df-plt 15436  df-lub 15452  df-glb 15453  df-join 15454  df-meet 15455  df-p0 15517  df-p1 15518  df-lat 15524  df-clat 15586  df-oposet 33850  df-ol 33852  df-oml 33853  df-covers 33940  df-ats 33941  df-atl 33972  df-cvlat 33996  df-hlat 34025  df-llines 34171  df-lplanes 34172  df-lvols 34173  df-lines 34174  df-psubsp 34176  df-pmap 34177  df-padd 34469  df-lhyp 34661  df-laut 34662  df-ldil 34777  df-ltrn 34778  df-trl 34832  df-disoa 35703
This theorem is referenced by:  diaclN  35724  diacnvclN  35725  dia1elN  35728  diainN  35731  diaintclN  35732  diasslssN  35733  docaclN  35798  diaocN  35799  doca3N  35801  diaf1oN  35804
  Copyright terms: Public domain W3C validator