Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem5 Structured version   Unicode version

Theorem dia2dimlem5 34710
Description: Lemma for dia2dim 34719. The sum of vectors  G and  D belongs to the sum of the subspaces generated by them. Thus,  F  =  ( G  o.  D ) belongs to the subspace sum. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem5.l  |-  .<_  =  ( le `  K )
dia2dimlem5.j  |-  .\/  =  ( join `  K )
dia2dimlem5.m  |-  ./\  =  ( meet `  K )
dia2dimlem5.a  |-  A  =  ( Atoms `  K )
dia2dimlem5.h  |-  H  =  ( LHyp `  K
)
dia2dimlem5.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem5.r  |-  R  =  ( ( trL `  K
) `  W )
dia2dimlem5.y  |-  Y  =  ( ( DVecA `  K
) `  W )
dia2dimlem5.s  |-  S  =  ( LSubSp `  Y )
dia2dimlem5.pl  |-  .(+)  =  (
LSSum `  Y )
dia2dimlem5.n  |-  N  =  ( LSpan `  Y )
dia2dimlem5.i  |-  I  =  ( ( DIsoA `  K
) `  W )
dia2dimlem5.q  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
dia2dimlem5.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem5.u  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
dia2dimlem5.v  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
dia2dimlem5.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem5.f  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
dia2dimlem5.rf  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
dia2dimlem5.uv  |-  ( ph  ->  U  =/=  V )
dia2dimlem5.ru  |-  ( ph  ->  ( R `  F
)  =/=  U )
dia2dimlem5.rv  |-  ( ph  ->  ( R `  F
)  =/=  V )
dia2dimlem5.g  |-  ( ph  ->  G  e.  T )
dia2dimlem5.gv  |-  ( ph  ->  ( G `  P
)  =  Q )
dia2dimlem5.d  |-  ( ph  ->  D  e.  T )
dia2dimlem5.dv  |-  ( ph  ->  ( D `  Q
)  =  ( F `
 P ) )
Assertion
Ref Expression
dia2dimlem5  |-  ( ph  ->  F  e.  ( ( I `  U ) 
.(+)  ( I `  V ) ) )

Proof of Theorem dia2dimlem5
StepHypRef Expression
1 dia2dimlem5.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dia2dimlem5.d . . . . 5  |-  ( ph  ->  D  e.  T )
3 dia2dimlem5.g . . . . 5  |-  ( ph  ->  G  e.  T )
4 dia2dimlem5.h . . . . . 6  |-  H  =  ( LHyp `  K
)
5 dia2dimlem5.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
6 dia2dimlem5.y . . . . . 6  |-  Y  =  ( ( DVecA `  K
) `  W )
7 eqid 2441 . . . . . 6  |-  ( +g  `  Y )  =  ( +g  `  Y )
84, 5, 6, 7dvavadd 34656 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( D  e.  T  /\  G  e.  T ) )  -> 
( D ( +g  `  Y ) G )  =  ( D  o.  G ) )
91, 2, 3, 8syl12anc 1216 . . . 4  |-  ( ph  ->  ( D ( +g  `  Y ) G )  =  ( D  o.  G ) )
10 dia2dimlem5.l . . . . 5  |-  .<_  =  ( le `  K )
11 dia2dimlem5.a . . . . 5  |-  A  =  ( Atoms `  K )
12 dia2dimlem5.p . . . . 5  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
13 dia2dimlem5.f . . . . . 6  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
1413simpld 459 . . . . 5  |-  ( ph  ->  F  e.  T )
15 dia2dimlem5.gv . . . . 5  |-  ( ph  ->  ( G `  P
)  =  Q )
16 dia2dimlem5.dv . . . . 5  |-  ( ph  ->  ( D `  Q
)  =  ( F `
 P ) )
1710, 11, 4, 5, 1, 12, 14, 3, 15, 2, 16dia2dimlem4 34709 . . . 4  |-  ( ph  ->  ( D  o.  G
)  =  F )
189, 17eqtr2d 2474 . . 3  |-  ( ph  ->  F  =  ( D ( +g  `  Y
) G ) )
194, 6dvalvec 34668 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Y  e.  LVec )
20 lveclmod 17185 . . . . . . 7  |-  ( Y  e.  LVec  ->  Y  e. 
LMod )
211, 19, 203syl 20 . . . . . 6  |-  ( ph  ->  Y  e.  LMod )
22 dia2dimlem5.s . . . . . . 7  |-  S  =  ( LSubSp `  Y )
2322lsssssubg 17037 . . . . . 6  |-  ( Y  e.  LMod  ->  S  C_  (SubGrp `  Y ) )
2421, 23syl 16 . . . . 5  |-  ( ph  ->  S  C_  (SubGrp `  Y
) )
25 dia2dimlem5.v . . . . . . . 8  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
2625simpld 459 . . . . . . 7  |-  ( ph  ->  V  e.  A )
27 eqid 2441 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2827, 11atbase 32931 . . . . . . 7  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
2926, 28syl 16 . . . . . 6  |-  ( ph  ->  V  e.  ( Base `  K ) )
3025simprd 463 . . . . . 6  |-  ( ph  ->  V  .<_  W )
31 dia2dimlem5.i . . . . . . 7  |-  I  =  ( ( DIsoA `  K
) `  W )
3227, 10, 4, 6, 31, 22dialss 34688 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( V  e.  ( Base `  K
)  /\  V  .<_  W ) )  ->  (
I `  V )  e.  S )
331, 29, 30, 32syl12anc 1216 . . . . 5  |-  ( ph  ->  ( I `  V
)  e.  S )
3424, 33sseldd 3355 . . . 4  |-  ( ph  ->  ( I `  V
)  e.  (SubGrp `  Y ) )
35 dia2dimlem5.u . . . . . . . 8  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
3635simpld 459 . . . . . . 7  |-  ( ph  ->  U  e.  A )
3727, 11atbase 32931 . . . . . . 7  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
3836, 37syl 16 . . . . . 6  |-  ( ph  ->  U  e.  ( Base `  K ) )
3935simprd 463 . . . . . 6  |-  ( ph  ->  U  .<_  W )
4027, 10, 4, 6, 31, 22dialss 34688 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  ( Base `  K
)  /\  U  .<_  W ) )  ->  (
I `  U )  e.  S )
411, 38, 39, 40syl12anc 1216 . . . . 5  |-  ( ph  ->  ( I `  U
)  e.  S )
4224, 41sseldd 3355 . . . 4  |-  ( ph  ->  ( I `  U
)  e.  (SubGrp `  Y ) )
43 dia2dimlem5.r . . . . . . . 8  |-  R  =  ( ( trL `  K
) `  W )
44 dia2dimlem5.n . . . . . . . 8  |-  N  =  ( LSpan `  Y )
454, 5, 43, 6, 31, 44dia1dim2 34704 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T
)  ->  ( I `  ( R `  D
) )  =  ( N `  { D } ) )
461, 2, 45syl2anc 661 . . . . . 6  |-  ( ph  ->  ( I `  ( R `  D )
)  =  ( N `
 { D }
) )
47 dia2dimlem5.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
48 dia2dimlem5.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
49 dia2dimlem5.q . . . . . . . . . 10  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
50 dia2dimlem5.rf . . . . . . . . . 10  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
51 dia2dimlem5.uv . . . . . . . . . 10  |-  ( ph  ->  U  =/=  V )
52 dia2dimlem5.ru . . . . . . . . . 10  |-  ( ph  ->  ( R `  F
)  =/=  U )
53 dia2dimlem5.rv . . . . . . . . . 10  |-  ( ph  ->  ( R `  F
)  =/=  V )
5410, 47, 48, 11, 4, 5, 43, 49, 1, 35, 25, 12, 13, 50, 51, 52, 53, 2, 16dia2dimlem3 34708 . . . . . . . . 9  |-  ( ph  ->  ( R `  D
)  =  V )
5554fveq2d 5693 . . . . . . . 8  |-  ( ph  ->  ( I `  ( R `  D )
)  =  ( I `
 V ) )
56 eqss 3369 . . . . . . . 8  |-  ( ( I `  ( R `
 D ) )  =  ( I `  V )  <->  ( (
I `  ( R `  D ) )  C_  ( I `  V
)  /\  ( I `  V )  C_  (
I `  ( R `  D ) ) ) )
5755, 56sylib 196 . . . . . . 7  |-  ( ph  ->  ( ( I `  ( R `  D ) )  C_  ( I `  V )  /\  (
I `  V )  C_  ( I `  ( R `  D )
) ) )
5857simpld 459 . . . . . 6  |-  ( ph  ->  ( I `  ( R `  D )
)  C_  ( I `  V ) )
5946, 58eqsstr3d 3389 . . . . 5  |-  ( ph  ->  ( N `  { D } )  C_  (
I `  V )
)
60 eqid 2441 . . . . . 6  |-  ( Base `  Y )  =  (
Base `  Y )
614, 5, 6, 60dvavbase 34654 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  Y
)  =  T )
621, 61syl 16 . . . . . . 7  |-  ( ph  ->  ( Base `  Y
)  =  T )
632, 62eleqtrrd 2518 . . . . . 6  |-  ( ph  ->  D  e.  ( Base `  Y ) )
6460, 22, 44, 21, 33, 63lspsnel5 17074 . . . . 5  |-  ( ph  ->  ( D  e.  ( I `  V )  <-> 
( N `  { D } )  C_  (
I `  V )
) )
6559, 64mpbird 232 . . . 4  |-  ( ph  ->  D  e.  ( I `
 V ) )
664, 5, 43, 6, 31, 44dia1dim2 34704 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( I `  ( R `  G
) )  =  ( N `  { G } ) )
671, 3, 66syl2anc 661 . . . . . 6  |-  ( ph  ->  ( I `  ( R `  G )
)  =  ( N `
 { G }
) )
6810, 47, 48, 11, 4, 5, 43, 49, 1, 35, 25, 12, 13, 50, 53, 3, 15dia2dimlem2 34707 . . . . . . . . 9  |-  ( ph  ->  ( R `  G
)  =  U )
6968fveq2d 5693 . . . . . . . 8  |-  ( ph  ->  ( I `  ( R `  G )
)  =  ( I `
 U ) )
70 eqss 3369 . . . . . . . 8  |-  ( ( I `  ( R `
 G ) )  =  ( I `  U )  <->  ( (
I `  ( R `  G ) )  C_  ( I `  U
)  /\  ( I `  U )  C_  (
I `  ( R `  G ) ) ) )
7169, 70sylib 196 . . . . . . 7  |-  ( ph  ->  ( ( I `  ( R `  G ) )  C_  ( I `  U )  /\  (
I `  U )  C_  ( I `  ( R `  G )
) ) )
7271simpld 459 . . . . . 6  |-  ( ph  ->  ( I `  ( R `  G )
)  C_  ( I `  U ) )
7367, 72eqsstr3d 3389 . . . . 5  |-  ( ph  ->  ( N `  { G } )  C_  (
I `  U )
)
743, 62eleqtrrd 2518 . . . . . 6  |-  ( ph  ->  G  e.  ( Base `  Y ) )
7560, 22, 44, 21, 41, 74lspsnel5 17074 . . . . 5  |-  ( ph  ->  ( G  e.  ( I `  U )  <-> 
( N `  { G } )  C_  (
I `  U )
) )
7673, 75mpbird 232 . . . 4  |-  ( ph  ->  G  e.  ( I `
 U ) )
77 dia2dimlem5.pl . . . . 5  |-  .(+)  =  (
LSSum `  Y )
787, 77lsmelvali 16147 . . . 4  |-  ( ( ( ( I `  V )  e.  (SubGrp `  Y )  /\  (
I `  U )  e.  (SubGrp `  Y )
)  /\  ( D  e.  ( I `  V
)  /\  G  e.  ( I `  U
) ) )  -> 
( D ( +g  `  Y ) G )  e.  ( ( I `
 V )  .(+)  ( I `  U ) ) )
7934, 42, 65, 76, 78syl22anc 1219 . . 3  |-  ( ph  ->  ( D ( +g  `  Y ) G )  e.  ( ( I `
 V )  .(+)  ( I `  U ) ) )
8018, 79eqeltrd 2515 . 2  |-  ( ph  ->  F  e.  ( ( I `  V ) 
.(+)  ( I `  U ) ) )
81 lmodabl 16990 . . . 4  |-  ( Y  e.  LMod  ->  Y  e. 
Abel )
8221, 81syl 16 . . 3  |-  ( ph  ->  Y  e.  Abel )
8377lsmcom 16338 . . 3  |-  ( ( Y  e.  Abel  /\  (
I `  V )  e.  (SubGrp `  Y )  /\  ( I `  U
)  e.  (SubGrp `  Y ) )  -> 
( ( I `  V )  .(+)  ( I `
 U ) )  =  ( ( I `
 U )  .(+)  ( I `  V ) ) )
8482, 34, 42, 83syl3anc 1218 . 2  |-  ( ph  ->  ( ( I `  V )  .(+)  ( I `
 U ) )  =  ( ( I `
 U )  .(+)  ( I `  V ) ) )
8580, 84eleqtrd 2517 1  |-  ( ph  ->  F  e.  ( ( I `  U ) 
.(+)  ( I `  V ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2604    C_ wss 3326   {csn 3875   class class class wbr 4290    o. ccom 4842   ` cfv 5416  (class class class)co 6089   Basecbs 14172   +g cplusg 14236   lecple 14243   joincjn 15112   meetcmee 15113  SubGrpcsubg 15673   LSSumclsm 16131   Abelcabel 16276   LModclmod 16946   LSubSpclss 17011   LSpanclspn 17050   LVecclvec 17181   Atomscatm 32905   HLchlt 32992   LHypclh 33625   LTrncltrn 33742   trLctrl 33799   DVecAcdveca 34643   DIsoAcdia 34670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-riotaBAD 32601
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-tpos 6743  df-undef 6790  df-recs 6830  df-rdg 6864  df-1o 6918  df-oadd 6922  df-er 7099  df-map 7214  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-nn 10321  df-2 10378  df-3 10379  df-4 10380  df-5 10381  df-6 10382  df-n0 10578  df-z 10645  df-uz 10860  df-fz 11436  df-struct 14174  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-ress 14179  df-plusg 14249  df-mulr 14250  df-sca 14252  df-vsca 14253  df-0g 14378  df-poset 15114  df-plt 15126  df-lub 15142  df-glb 15143  df-join 15144  df-meet 15145  df-p0 15207  df-p1 15208  df-lat 15214  df-clat 15276  df-mnd 15413  df-grp 15543  df-minusg 15544  df-sbg 15545  df-subg 15676  df-lsm 16133  df-cmn 16277  df-abl 16278  df-mgp 16590  df-ur 16602  df-rng 16645  df-oppr 16713  df-dvdsr 16731  df-unit 16732  df-invr 16762  df-dvr 16773  df-drng 16832  df-lmod 16948  df-lss 17012  df-lsp 17051  df-lvec 17182  df-oposet 32818  df-ol 32820  df-oml 32821  df-covers 32908  df-ats 32909  df-atl 32940  df-cvlat 32964  df-hlat 32993  df-llines 33139  df-lplanes 33140  df-lvols 33141  df-lines 33142  df-psubsp 33144  df-pmap 33145  df-padd 33437  df-lhyp 33629  df-laut 33630  df-ldil 33745  df-ltrn 33746  df-trl 33800  df-tgrp 34384  df-tendo 34396  df-edring 34398  df-dveca 34644  df-disoa 34671
This theorem is referenced by:  dia2dimlem6  34711
  Copyright terms: Public domain W3C validator