Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem4 Structured version   Unicode version

Theorem dia2dimlem4 37207
Description: Lemma for dia2dim 37217. Show that the composition (sum) of translations (vectors)  G and  D equals  F. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem4.l  |-  .<_  =  ( le `  K )
dia2dimlem4.a  |-  A  =  ( Atoms `  K )
dia2dimlem4.h  |-  H  =  ( LHyp `  K
)
dia2dimlem4.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem4.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem4.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem4.f  |-  ( ph  ->  F  e.  T )
dia2dimlem4.g  |-  ( ph  ->  G  e.  T )
dia2dimlem4.gv  |-  ( ph  ->  ( G `  P
)  =  Q )
dia2dimlem4.d  |-  ( ph  ->  D  e.  T )
dia2dimlem4.dv  |-  ( ph  ->  ( D `  Q
)  =  ( F `
 P ) )
Assertion
Ref Expression
dia2dimlem4  |-  ( ph  ->  ( D  o.  G
)  =  F )

Proof of Theorem dia2dimlem4
StepHypRef Expression
1 dia2dimlem4.k . 2  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dia2dimlem4.d . . 3  |-  ( ph  ->  D  e.  T )
3 dia2dimlem4.g . . 3  |-  ( ph  ->  G  e.  T )
4 dia2dimlem4.h . . . 4  |-  H  =  ( LHyp `  K
)
5 dia2dimlem4.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
64, 5ltrnco 36858 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T  /\  G  e.  T
)  ->  ( D  o.  G )  e.  T
)
71, 2, 3, 6syl3anc 1226 . 2  |-  ( ph  ->  ( D  o.  G
)  e.  T )
8 dia2dimlem4.f . 2  |-  ( ph  ->  F  e.  T )
9 dia2dimlem4.p . 2  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
109simpld 457 . . . 4  |-  ( ph  ->  P  e.  A )
11 dia2dimlem4.l . . . . 5  |-  .<_  =  ( le `  K )
12 dia2dimlem4.a . . . . 5  |-  A  =  ( Atoms `  K )
1311, 12, 4, 5ltrncoval 36282 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( D  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  (
( D  o.  G
) `  P )  =  ( D `  ( G `  P ) ) )
141, 2, 3, 10, 13syl121anc 1231 . . 3  |-  ( ph  ->  ( ( D  o.  G ) `  P
)  =  ( D `
 ( G `  P ) ) )
15 dia2dimlem4.gv . . . 4  |-  ( ph  ->  ( G `  P
)  =  Q )
1615fveq2d 5778 . . 3  |-  ( ph  ->  ( D `  ( G `  P )
)  =  ( D `
 Q ) )
17 dia2dimlem4.dv . . 3  |-  ( ph  ->  ( D `  Q
)  =  ( F `
 P ) )
1814, 16, 173eqtrd 2427 . 2  |-  ( ph  ->  ( ( D  o.  G ) `  P
)  =  ( F `
 P ) )
1911, 12, 4, 5cdlemd 36345 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( D  o.  G )  e.  T  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( D  o.  G ) `  P )  =  ( F `  P ) )  ->  ( D  o.  G )  =  F )
201, 7, 8, 9, 18, 19syl311anc 1240 1  |-  ( ph  ->  ( D  o.  G
)  =  F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1826   class class class wbr 4367    o. ccom 4917   ` cfv 5496   lecple 14709   Atomscatm 35401   HLchlt 35488   LHypclh 36121   LTrncltrn 36238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-riotaBAD 35097
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-1st 6699  df-2nd 6700  df-undef 6920  df-map 7340  df-preset 15674  df-poset 15692  df-plt 15705  df-lub 15721  df-glb 15722  df-join 15723  df-meet 15724  df-p0 15786  df-p1 15787  df-lat 15793  df-clat 15855  df-oposet 35314  df-ol 35316  df-oml 35317  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489  df-llines 35635  df-lplanes 35636  df-lvols 35637  df-lines 35638  df-psubsp 35640  df-pmap 35641  df-padd 35933  df-lhyp 36125  df-laut 36126  df-ldil 36241  df-ltrn 36242  df-trl 36297
This theorem is referenced by:  dia2dimlem5  37208
  Copyright terms: Public domain W3C validator