Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem3 Structured version   Unicode version

Theorem dia2dimlem3 34603
Description: Lemma for dia2dim 34614. Define a translation  D whose trace is atom  V. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem3.l  |-  .<_  =  ( le `  K )
dia2dimlem3.j  |-  .\/  =  ( join `  K )
dia2dimlem3.m  |-  ./\  =  ( meet `  K )
dia2dimlem3.a  |-  A  =  ( Atoms `  K )
dia2dimlem3.h  |-  H  =  ( LHyp `  K
)
dia2dimlem3.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem3.r  |-  R  =  ( ( trL `  K
) `  W )
dia2dimlem3.q  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
dia2dimlem3.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem3.u  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
dia2dimlem3.v  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
dia2dimlem3.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem3.f  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
dia2dimlem3.rf  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
dia2dimlem3.uv  |-  ( ph  ->  U  =/=  V )
dia2dimlem3.ru  |-  ( ph  ->  ( R `  F
)  =/=  U )
dia2dimlem3.rv  |-  ( ph  ->  ( R `  F
)  =/=  V )
dia2dimlem3.d  |-  ( ph  ->  D  e.  T )
dia2dimlem3.dv  |-  ( ph  ->  ( D `  Q
)  =  ( F `
 P ) )
Assertion
Ref Expression
dia2dimlem3  |-  ( ph  ->  ( R `  D
)  =  V )

Proof of Theorem dia2dimlem3
StepHypRef Expression
1 dia2dimlem3.k . . . . . . 7  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
21simpld 460 . . . . . 6  |-  ( ph  ->  K  e.  HL )
3 dia2dimlem3.f . . . . . . . . 9  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
43simpld 460 . . . . . . . 8  |-  ( ph  ->  F  e.  T )
5 dia2dimlem3.p . . . . . . . 8  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
6 dia2dimlem3.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
7 dia2dimlem3.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
8 dia2dimlem3.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
9 dia2dimlem3.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
106, 7, 8, 9ltrnel 33673 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
111, 4, 5, 10syl3anc 1264 . . . . . . 7  |-  ( ph  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
1211simpld 460 . . . . . 6  |-  ( ph  ->  ( F `  P
)  e.  A )
13 dia2dimlem3.v . . . . . . 7  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
1413simpld 460 . . . . . 6  |-  ( ph  ->  V  e.  A )
15 dia2dimlem3.j . . . . . . 7  |-  .\/  =  ( join `  K )
166, 15, 7hlatlej2 32910 . . . . . 6  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  V  .<_  ( ( F `  P )  .\/  V
) )
172, 12, 14, 16syl3anc 1264 . . . . 5  |-  ( ph  ->  V  .<_  ( ( F `  P )  .\/  V ) )
18 hllat 32898 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
192, 18syl 17 . . . . . 6  |-  ( ph  ->  K  e.  Lat )
20 eqid 2422 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2120, 7atbase 32824 . . . . . . 7  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
2214, 21syl 17 . . . . . 6  |-  ( ph  ->  V  e.  ( Base `  K ) )
2320, 15, 7hlatjcl 32901 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )
242, 12, 14, 23syl3anc 1264 . . . . . 6  |-  ( ph  ->  ( ( F `  P )  .\/  V
)  e.  ( Base `  K ) )
25 dia2dimlem3.r . . . . . . . . 9  |-  R  =  ( ( trL `  K
) `  W )
266, 7, 8, 9, 25trlat 33704 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
271, 5, 3, 26syl3anc 1264 . . . . . . 7  |-  ( ph  ->  ( R `  F
)  e.  A )
28 dia2dimlem3.u . . . . . . . 8  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
2928simpld 460 . . . . . . 7  |-  ( ph  ->  U  e.  A )
3020, 15, 7hlatjcl 32901 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( R `  F )  e.  A  /\  U  e.  A )  ->  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) )
312, 27, 29, 30syl3anc 1264 . . . . . 6  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  e.  ( Base `  K ) )
32 dia2dimlem3.m . . . . . . 7  |-  ./\  =  ( meet `  K )
3320, 6, 32latmlem2 16327 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( V  e.  ( Base `  K )  /\  ( ( F `  P )  .\/  V
)  e.  ( Base `  K )  /\  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) ) )  -> 
( V  .<_  ( ( F `  P ) 
.\/  V )  -> 
( ( ( R `
 F )  .\/  U )  ./\  V )  .<_  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) ) )
3419, 22, 24, 31, 33syl13anc 1266 . . . . 5  |-  ( ph  ->  ( V  .<_  ( ( F `  P ) 
.\/  V )  -> 
( ( ( R `
 F )  .\/  U )  ./\  V )  .<_  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) ) )
3517, 34mpd 15 . . . 4  |-  ( ph  ->  ( ( ( R `
 F )  .\/  U )  ./\  V )  .<_  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) )
36 dia2dimlem3.rf . . . . . . 7  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
3715, 7hlatjcom 32902 . . . . . . . 8  |-  ( ( K  e.  HL  /\  U  e.  A  /\  V  e.  A )  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
382, 29, 14, 37syl3anc 1264 . . . . . . 7  |-  ( ph  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
3936, 38breqtrd 4448 . . . . . 6  |-  ( ph  ->  ( R `  F
)  .<_  ( V  .\/  U ) )
40 dia2dimlem3.ru . . . . . . 7  |-  ( ph  ->  ( R `  F
)  =/=  U )
416, 15, 7hlatexch2 32930 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  V  e.  A  /\  U  e.  A
)  /\  ( R `  F )  =/=  U
)  ->  ( ( R `  F )  .<_  ( V  .\/  U
)  ->  V  .<_  ( ( R `  F
)  .\/  U )
) )
422, 27, 14, 29, 40, 41syl131anc 1277 . . . . . 6  |-  ( ph  ->  ( ( R `  F )  .<_  ( V 
.\/  U )  ->  V  .<_  ( ( R `
 F )  .\/  U ) ) )
4339, 42mpd 15 . . . . 5  |-  ( ph  ->  V  .<_  ( ( R `  F )  .\/  U ) )
4420, 6, 32latleeqm2 16325 . . . . . 6  |-  ( ( K  e.  Lat  /\  V  e.  ( Base `  K )  /\  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) )  ->  ( V  .<_  ( ( R `
 F )  .\/  U )  <->  ( ( ( R `  F ) 
.\/  U )  ./\  V )  =  V ) )
4519, 22, 31, 44syl3anc 1264 . . . . 5  |-  ( ph  ->  ( V  .<_  ( ( R `  F ) 
.\/  U )  <->  ( (
( R `  F
)  .\/  U )  ./\  V )  =  V ) )
4643, 45mpbid 213 . . . 4  |-  ( ph  ->  ( ( ( R `
 F )  .\/  U )  ./\  V )  =  V )
47 dia2dimlem3.d . . . . . 6  |-  ( ph  ->  D  e.  T )
48 dia2dimlem3.q . . . . . . 7  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
49 dia2dimlem3.uv . . . . . . 7  |-  ( ph  ->  U  =/=  V )
506, 15, 32, 7, 8, 9, 25, 48, 1, 28, 13, 5, 3, 36, 49, 40dia2dimlem1 34601 . . . . . 6  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
516, 15, 32, 7, 8, 9, 25trlval2 33698 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( R `  D )  =  ( ( Q  .\/  ( D `  Q )
)  ./\  W )
)
521, 47, 50, 51syl3anc 1264 . . . . 5  |-  ( ph  ->  ( R `  D
)  =  ( ( Q  .\/  ( D `
 Q ) ) 
./\  W ) )
5348a1i 11 . . . . . . . . 9  |-  ( ph  ->  Q  =  ( ( P  .\/  U ) 
./\  ( ( F `
 P )  .\/  V ) ) )
54 dia2dimlem3.dv . . . . . . . . 9  |-  ( ph  ->  ( D `  Q
)  =  ( F `
 P ) )
5553, 54oveq12d 6323 . . . . . . . 8  |-  ( ph  ->  ( Q  .\/  ( D `  Q )
)  =  ( ( ( P  .\/  U
)  ./\  ( ( F `  P )  .\/  V ) )  .\/  ( F `  P ) ) )
565simpld 460 . . . . . . . . . 10  |-  ( ph  ->  P  e.  A )
5720, 15, 7hlatjcl 32901 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
582, 56, 29, 57syl3anc 1264 . . . . . . . . 9  |-  ( ph  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
596, 15, 7hlatlej1 32909 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  ( F `  P )  .<_  ( ( F `  P )  .\/  V
) )
602, 12, 14, 59syl3anc 1264 . . . . . . . . 9  |-  ( ph  ->  ( F `  P
)  .<_  ( ( F `
 P )  .\/  V ) )
6120, 6, 15, 32, 7atmod4i1 33400 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( ( F `  P )  e.  A  /\  ( P  .\/  U
)  e.  ( Base `  K )  /\  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )  /\  ( F `  P )  .<_  ( ( F `  P )  .\/  V
) )  ->  (
( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  .\/  ( F `  P ) )  =  ( ( ( P  .\/  U
)  .\/  ( F `  P ) )  ./\  ( ( F `  P )  .\/  V
) ) )
622, 12, 58, 24, 60, 61syl131anc 1277 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) )  .\/  ( F `  P )
)  =  ( ( ( P  .\/  U
)  .\/  ( F `  P ) )  ./\  ( ( F `  P )  .\/  V
) ) )
6315, 7hlatj32 32906 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  U  e.  A  /\  ( F `  P
)  e.  A ) )  ->  ( ( P  .\/  U )  .\/  ( F `  P ) )  =  ( ( P  .\/  ( F `
 P ) ) 
.\/  U ) )
642, 56, 29, 12, 63syl13anc 1266 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  U )  .\/  ( F `
 P ) )  =  ( ( P 
.\/  ( F `  P ) )  .\/  U ) )
6564oveq1d 6320 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  U )  .\/  ( F `  P ) )  ./\  ( ( F `  P )  .\/  V ) )  =  ( ( ( P 
.\/  ( F `  P ) )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) )
6655, 62, 653eqtrd 2467 . . . . . . 7  |-  ( ph  ->  ( Q  .\/  ( D `  Q )
)  =  ( ( ( P  .\/  ( F `  P )
)  .\/  U )  ./\  ( ( F `  P )  .\/  V
) ) )
6766oveq1d 6320 . . . . . 6  |-  ( ph  ->  ( ( Q  .\/  ( D `  Q ) )  ./\  W )  =  ( ( ( ( P  .\/  ( F `  P )
)  .\/  U )  ./\  ( ( F `  P )  .\/  V
) )  ./\  W
) )
68 hlol 32896 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OL )
692, 68syl 17 . . . . . . 7  |-  ( ph  ->  K  e.  OL )
7020, 15, 7hlatjcl 32901 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
712, 56, 12, 70syl3anc 1264 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
7220, 7atbase 32824 . . . . . . . . 9  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
7329, 72syl 17 . . . . . . . 8  |-  ( ph  ->  U  e.  ( Base `  K ) )
7420, 15latjcl 16296 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
)  /\  U  e.  ( Base `  K )
)  ->  ( ( P  .\/  ( F `  P ) )  .\/  U )  e.  ( Base `  K ) )
7519, 71, 73, 74syl3anc 1264 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  .\/  U )  e.  ( Base `  K
) )
761simprd 464 . . . . . . . 8  |-  ( ph  ->  W  e.  H )
7720, 8lhpbase 33532 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
7876, 77syl 17 . . . . . . 7  |-  ( ph  ->  W  e.  ( Base `  K ) )
7920, 32latm32 32766 . . . . . . 7  |-  ( ( K  e.  OL  /\  ( ( ( P 
.\/  ( F `  P ) )  .\/  U )  e.  ( Base `  K )  /\  (
( F `  P
)  .\/  V )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( ( ( P 
.\/  ( F `  P ) )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  ./\  W )  =  ( ( ( ( P  .\/  ( F `  P ) )  .\/  U ) 
./\  W )  ./\  ( ( F `  P )  .\/  V
) ) )
8069, 75, 24, 78, 79syl13anc 1266 . . . . . 6  |-  ( ph  ->  ( ( ( ( P  .\/  ( F `
 P ) ) 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) )  ./\  W
)  =  ( ( ( ( P  .\/  ( F `  P ) )  .\/  U ) 
./\  W )  ./\  ( ( F `  P )  .\/  V
) ) )
816, 15, 32, 7, 8, 9, 25trlval2 33698 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
821, 4, 5, 81syl3anc 1264 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W ) )
8382oveq1d 6320 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  =  ( ( ( P  .\/  ( F `  P )
)  ./\  W )  .\/  U ) )
8428simprd 464 . . . . . . . . 9  |-  ( ph  ->  U  .<_  W )
8520, 6, 15, 32, 7atmod4i1 33400 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  U  .<_  W )  ->  (
( ( P  .\/  ( F `  P ) )  ./\  W )  .\/  U )  =  ( ( ( P  .\/  ( F `  P ) )  .\/  U ) 
./\  W ) )
862, 29, 71, 78, 84, 85syl131anc 1277 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  ./\  W )  .\/  U )  =  ( ( ( P  .\/  ( F `
 P ) ) 
.\/  U )  ./\  W ) )
8783, 86eqtr2d 2464 . . . . . . 7  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  .\/  U )  ./\  W )  =  ( ( R `
 F )  .\/  U ) )
8887oveq1d 6320 . . . . . 6  |-  ( ph  ->  ( ( ( ( P  .\/  ( F `
 P ) ) 
.\/  U )  ./\  W )  ./\  ( ( F `  P )  .\/  V ) )  =  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) )
8967, 80, 883eqtrd 2467 . . . . 5  |-  ( ph  ->  ( ( Q  .\/  ( D `  Q ) )  ./\  W )  =  ( ( ( R `  F ) 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) ) )
9052, 89eqtr2d 2464 . . . 4  |-  ( ph  ->  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  =  ( R `  D
) )
9135, 46, 903brtr3d 4453 . . 3  |-  ( ph  ->  V  .<_  ( R `  D ) )
92 hlatl 32895 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
932, 92syl 17 . . . 4  |-  ( ph  ->  K  e.  AtLat )
94 hlop 32897 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
952, 94syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  OP )
96 eqid 2422 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
97 eqid 2422 . . . . . . . . . 10  |-  ( lt
`  K )  =  ( lt `  K
)
9896, 97, 70ltat 32826 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  V  e.  A )  ->  ( 0. `  K
) ( lt `  K ) V )
9995, 14, 98syl2anc 665 . . . . . . . 8  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) V )
100 hlpos 32900 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Poset )
1012, 100syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  Poset )
10220, 96op0cl 32719 . . . . . . . . . 10  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
10395, 102syl 17 . . . . . . . . 9  |-  ( ph  ->  ( 0. `  K
)  e.  ( Base `  K ) )
10420, 8, 9, 25trlcl 33699 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T
)  ->  ( R `  D )  e.  (
Base `  K )
)
1051, 47, 104syl2anc 665 . . . . . . . . 9  |-  ( ph  ->  ( R `  D
)  e.  ( Base `  K ) )
10620, 6, 97pltletr 16216 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  (
( 0. `  K
)  e.  ( Base `  K )  /\  V  e.  ( Base `  K
)  /\  ( R `  D )  e.  (
Base `  K )
) )  ->  (
( ( 0. `  K ) ( lt
`  K ) V  /\  V  .<_  ( R `
 D ) )  ->  ( 0. `  K ) ( lt
`  K ) ( R `  D ) ) )
107101, 103, 22, 105, 106syl13anc 1266 . . . . . . . 8  |-  ( ph  ->  ( ( ( 0.
`  K ) ( lt `  K ) V  /\  V  .<_  ( R `  D ) )  ->  ( 0. `  K ) ( lt
`  K ) ( R `  D ) ) )
10899, 91, 107mp2and 683 . . . . . . 7  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) ( R `
 D ) )
10920, 97, 96opltn0 32725 . . . . . . . 8  |-  ( ( K  e.  OP  /\  ( R `  D )  e.  ( Base `  K
) )  ->  (
( 0. `  K
) ( lt `  K ) ( R `
 D )  <->  ( R `  D )  =/=  ( 0. `  K ) ) )
11095, 105, 109syl2anc 665 . . . . . . 7  |-  ( ph  ->  ( ( 0. `  K ) ( lt
`  K ) ( R `  D )  <-> 
( R `  D
)  =/=  ( 0.
`  K ) ) )
111108, 110mpbid 213 . . . . . 6  |-  ( ph  ->  ( R `  D
)  =/=  ( 0.
`  K ) )
112111neneqd 2621 . . . . 5  |-  ( ph  ->  -.  ( R `  D )  =  ( 0. `  K ) )
11396, 7, 8, 9, 25trlator0 33706 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T
)  ->  ( ( R `  D )  e.  A  \/  ( R `  D )  =  ( 0. `  K ) ) )
1141, 47, 113syl2anc 665 . . . . . . 7  |-  ( ph  ->  ( ( R `  D )  e.  A  \/  ( R `  D
)  =  ( 0.
`  K ) ) )
115114orcomd 389 . . . . . 6  |-  ( ph  ->  ( ( R `  D )  =  ( 0. `  K )  \/  ( R `  D )  e.  A
) )
116115ord 378 . . . . 5  |-  ( ph  ->  ( -.  ( R `
 D )  =  ( 0. `  K
)  ->  ( R `  D )  e.  A
) )
117112, 116mpd 15 . . . 4  |-  ( ph  ->  ( R `  D
)  e.  A )
1186, 7atcmp 32846 . . . 4  |-  ( ( K  e.  AtLat  /\  V  e.  A  /\  ( R `  D )  e.  A )  ->  ( V  .<_  ( R `  D )  <->  V  =  ( R `  D ) ) )
11993, 14, 117, 118syl3anc 1264 . . 3  |-  ( ph  ->  ( V  .<_  ( R `
 D )  <->  V  =  ( R `  D ) ) )
12091, 119mpbid 213 . 2  |-  ( ph  ->  V  =  ( R `
 D ) )
121120eqcomd 2430 1  |-  ( ph  ->  ( R `  D
)  =  V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2614   class class class wbr 4423   ` cfv 5601  (class class class)co 6305   Basecbs 15120   lecple 15196   Posetcpo 16184   ltcplt 16185   joincjn 16188   meetcmee 16189   0.cp0 16282   Latclat 16290   OPcops 32707   OLcol 32709   Atomscatm 32798   AtLatcal 32799   HLchlt 32885   LHypclh 33518   LTrncltrn 33635   trLctrl 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-map 7485  df-preset 16172  df-poset 16190  df-plt 16203  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-p0 16284  df-p1 16285  df-lat 16291  df-clat 16353  df-oposet 32711  df-ol 32713  df-oml 32714  df-covers 32801  df-ats 32802  df-atl 32833  df-cvlat 32857  df-hlat 32886  df-llines 33032  df-psubsp 33037  df-pmap 33038  df-padd 33330  df-lhyp 33522  df-laut 33523  df-ldil 33638  df-ltrn 33639  df-trl 33694
This theorem is referenced by:  dia2dimlem5  34605
  Copyright terms: Public domain W3C validator