Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem2 Structured version   Unicode version

Theorem dia2dimlem2 36935
Description: Lemma for dia2dim 36947. Define a translation  G whose trace is atom  U. Part of proof of Lemma M in [Crawley] p. 121 line 4. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem2.l  |-  .<_  =  ( le `  K )
dia2dimlem2.j  |-  .\/  =  ( join `  K )
dia2dimlem2.m  |-  ./\  =  ( meet `  K )
dia2dimlem2.a  |-  A  =  ( Atoms `  K )
dia2dimlem2.h  |-  H  =  ( LHyp `  K
)
dia2dimlem2.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem2.r  |-  R  =  ( ( trL `  K
) `  W )
dia2dimlem2.q  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
dia2dimlem2.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem2.u  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
dia2dimlem2.v  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
dia2dimlem2.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem2.f  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
dia2dimlem2.rf  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
dia2dimlem2.rv  |-  ( ph  ->  ( R `  F
)  =/=  V )
dia2dimlem2.g  |-  ( ph  ->  G  e.  T )
dia2dimlem2.gv  |-  ( ph  ->  ( G `  P
)  =  Q )
Assertion
Ref Expression
dia2dimlem2  |-  ( ph  ->  ( R `  G
)  =  U )

Proof of Theorem dia2dimlem2
StepHypRef Expression
1 dia2dimlem2.k . . . . . . . . 9  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
21simpld 459 . . . . . . . 8  |-  ( ph  ->  K  e.  HL )
3 hllat 35231 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . . . . . 7  |-  ( ph  ->  K  e.  Lat )
5 dia2dimlem2.p . . . . . . . . 9  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
65simpld 459 . . . . . . . 8  |-  ( ph  ->  P  e.  A )
7 eqid 2457 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
8 dia2dimlem2.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
97, 8atbase 35157 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
106, 9syl 16 . . . . . . 7  |-  ( ph  ->  P  e.  ( Base `  K ) )
11 dia2dimlem2.u . . . . . . . . 9  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
1211simpld 459 . . . . . . . 8  |-  ( ph  ->  U  e.  A )
137, 8atbase 35157 . . . . . . . 8  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
1412, 13syl 16 . . . . . . 7  |-  ( ph  ->  U  e.  ( Base `  K ) )
15 dia2dimlem2.l . . . . . . . 8  |-  .<_  =  ( le `  K )
16 dia2dimlem2.j . . . . . . . 8  |-  .\/  =  ( join `  K )
177, 15, 16latlej2 15818 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  U  .<_  ( P  .\/  U
) )
184, 10, 14, 17syl3anc 1228 . . . . . 6  |-  ( ph  ->  U  .<_  ( P  .\/  U ) )
197, 16, 8hlatjcl 35234 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
202, 6, 12, 19syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
21 dia2dimlem2.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
227, 15, 21latleeqm2 15837 . . . . . . 7  |-  ( ( K  e.  Lat  /\  U  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
) )  ->  ( U  .<_  ( P  .\/  U )  <->  ( ( P 
.\/  U )  ./\  U )  =  U ) )
234, 14, 20, 22syl3anc 1228 . . . . . 6  |-  ( ph  ->  ( U  .<_  ( P 
.\/  U )  <->  ( ( P  .\/  U )  ./\  U )  =  U ) )
2418, 23mpbid 210 . . . . 5  |-  ( ph  ->  ( ( P  .\/  U )  ./\  U )  =  U )
25 dia2dimlem2.rf . . . . . . . 8  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
26 dia2dimlem2.f . . . . . . . . . 10  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
27 dia2dimlem2.h . . . . . . . . . . 11  |-  H  =  ( LHyp `  K
)
28 dia2dimlem2.t . . . . . . . . . . 11  |-  T  =  ( ( LTrn `  K
) `  W )
29 dia2dimlem2.r . . . . . . . . . . 11  |-  R  =  ( ( trL `  K
) `  W )
3015, 8, 27, 28, 29trlat 36037 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
311, 5, 26, 30syl3anc 1228 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  e.  A )
32 dia2dimlem2.v . . . . . . . . . 10  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
3332simpld 459 . . . . . . . . 9  |-  ( ph  ->  V  e.  A )
34 dia2dimlem2.rv . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  =/=  V )
3515, 16, 8hlatexch2 35263 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  U  e.  A  /\  V  e.  A
)  /\  ( R `  F )  =/=  V
)  ->  ( ( R `  F )  .<_  ( U  .\/  V
)  ->  U  .<_  ( ( R `  F
)  .\/  V )
) )
362, 31, 12, 33, 34, 35syl131anc 1241 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .<_  ( U 
.\/  V )  ->  U  .<_  ( ( R `
 F )  .\/  V ) ) )
3725, 36mpd 15 . . . . . . 7  |-  ( ph  ->  U  .<_  ( ( R `  F )  .\/  V ) )
3826simpld 459 . . . . . . . . . 10  |-  ( ph  ->  F  e.  T )
3915, 16, 21, 8, 27, 28, 29trlval2 36031 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
401, 38, 5, 39syl3anc 1228 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W ) )
4140oveq1d 6311 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .\/  V
)  =  ( ( ( P  .\/  ( F `  P )
)  ./\  W )  .\/  V ) )
4215, 8, 27, 28ltrnel 36006 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
431, 38, 5, 42syl3anc 1228 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
4443simpld 459 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  P
)  e.  A )
457, 16, 8hlatjcl 35234 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
462, 6, 44, 45syl3anc 1228 . . . . . . . . . 10  |-  ( ph  ->  ( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
471simprd 463 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  H )
487, 27lhpbase 35865 . . . . . . . . . . 11  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
4947, 48syl 16 . . . . . . . . . 10  |-  ( ph  ->  W  e.  ( Base `  K ) )
5032simprd 463 . . . . . . . . . 10  |-  ( ph  ->  V  .<_  W )
517, 15, 16, 21, 8atmod4i1 35733 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  V  .<_  W )  ->  (
( ( P  .\/  ( F `  P ) )  ./\  W )  .\/  V )  =  ( ( ( P  .\/  ( F `  P ) )  .\/  V ) 
./\  W ) )
522, 33, 46, 49, 50, 51syl131anc 1241 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  ./\  W )  .\/  V )  =  ( ( ( P  .\/  ( F `
 P ) ) 
.\/  V )  ./\  W ) )
5316, 8hlatjass 35237 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( F `  P
)  e.  A  /\  V  e.  A )
)  ->  ( ( P  .\/  ( F `  P ) )  .\/  V )  =  ( P 
.\/  ( ( F `
 P )  .\/  V ) ) )
542, 6, 44, 33, 53syl13anc 1230 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  .\/  V )  =  ( P  .\/  ( ( F `  P )  .\/  V
) ) )
5554oveq1d 6311 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  .\/  V )  ./\  W )  =  ( ( P 
.\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) )
5652, 55eqtrd 2498 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  ./\  W )  .\/  V )  =  ( ( P 
.\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) )
5741, 56eqtrd 2498 . . . . . . 7  |-  ( ph  ->  ( ( R `  F )  .\/  V
)  =  ( ( P  .\/  ( ( F `  P ) 
.\/  V ) ) 
./\  W ) )
5837, 57breqtrd 4480 . . . . . 6  |-  ( ph  ->  U  .<_  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) )
597, 16, 8hlatjcl 35234 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )
602, 44, 33, 59syl3anc 1228 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  P )  .\/  V
)  e.  ( Base `  K ) )
617, 16latjcl 15808 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )  ->  ( P  .\/  ( ( F `
 P )  .\/  V ) )  e.  (
Base `  K )
)
624, 10, 60, 61syl3anc 1228 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  (
( F `  P
)  .\/  V )
)  e.  ( Base `  K ) )
637, 21latmcl 15809 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( ( F `  P ) 
.\/  V ) )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
)  e.  ( Base `  K ) )
644, 62, 49, 63syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
)  e.  ( Base `  K ) )
657, 15, 21latmlem2 15839 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( U  e.  ( Base `  K )  /\  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
)  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
) ) )  -> 
( U  .<_  ( ( P  .\/  ( ( F `  P ) 
.\/  V ) ) 
./\  W )  -> 
( ( P  .\/  U )  ./\  U )  .<_  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) ) )
664, 14, 64, 20, 65syl13anc 1230 . . . . . 6  |-  ( ph  ->  ( U  .<_  ( ( P  .\/  ( ( F `  P ) 
.\/  V ) ) 
./\  W )  -> 
( ( P  .\/  U )  ./\  U )  .<_  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) ) )
6758, 66mpd 15 . . . . 5  |-  ( ph  ->  ( ( P  .\/  U )  ./\  U )  .<_  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) )
6824, 67eqbrtrrd 4478 . . . 4  |-  ( ph  ->  U  .<_  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
) ) )
69 dia2dimlem2.g . . . . . . 7  |-  ( ph  ->  G  e.  T )
7015, 16, 21, 8, 27, 28, 29trlval2 36031 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  G )  =  ( ( P  .\/  ( G `  P )
)  ./\  W )
)
711, 69, 5, 70syl3anc 1228 . . . . . 6  |-  ( ph  ->  ( R `  G
)  =  ( ( P  .\/  ( G `
 P ) ) 
./\  W ) )
72 dia2dimlem2.gv . . . . . . . . . 10  |-  ( ph  ->  ( G `  P
)  =  Q )
73 dia2dimlem2.q . . . . . . . . . 10  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
7472, 73syl6eq 2514 . . . . . . . . 9  |-  ( ph  ->  ( G `  P
)  =  ( ( P  .\/  U ) 
./\  ( ( F `
 P )  .\/  V ) ) )
7574oveq2d 6312 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  ( G `  P )
)  =  ( P 
.\/  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) ) ) )
7675oveq1d 6311 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  ( G `  P ) )  ./\  W )  =  ( ( P 
.\/  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) ) )  ./\  W ) )
7715, 16, 8hlatlej1 35242 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  P  .<_  ( P  .\/  U ) )
782, 6, 12, 77syl3anc 1228 . . . . . . . . . 10  |-  ( ph  ->  P  .<_  ( P  .\/  U ) )
797, 15, 16, 21, 8atmod3i1 35731 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( P  .\/  U
)  e.  ( Base `  K )  /\  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  U
) )  ->  ( P  .\/  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) ) )  =  ( ( P  .\/  U )  ./\  ( P  .\/  ( ( F `  P )  .\/  V
) ) ) )
802, 6, 20, 60, 78, 79syl131anc 1241 . . . . . . . . 9  |-  ( ph  ->  ( P  .\/  (
( P  .\/  U
)  ./\  ( ( F `  P )  .\/  V ) ) )  =  ( ( P 
.\/  U )  ./\  ( P  .\/  ( ( F `  P ) 
.\/  V ) ) ) )
8180oveq1d 6311 . . . . . . . 8  |-  ( ph  ->  ( ( P  .\/  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) ) 
./\  W )  =  ( ( ( P 
.\/  U )  ./\  ( P  .\/  ( ( F `  P ) 
.\/  V ) ) )  ./\  W )
)
82 hlol 35229 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OL )
832, 82syl 16 . . . . . . . . 9  |-  ( ph  ->  K  e.  OL )
847, 21latmassOLD 35097 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( ( P  .\/  U )  e.  ( Base `  K )  /\  ( P  .\/  ( ( F `
 P )  .\/  V ) )  e.  (
Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( (
( P  .\/  U
)  ./\  ( P  .\/  ( ( F `  P )  .\/  V
) ) )  ./\  W )  =  ( ( P  .\/  U ) 
./\  ( ( P 
.\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) )
8583, 20, 62, 49, 84syl13anc 1230 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  U )  ./\  ( P  .\/  ( ( F `  P ) 
.\/  V ) ) )  ./\  W )  =  ( ( P 
.\/  U )  ./\  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
) ) )
8681, 85eqtrd 2498 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) ) 
./\  W )  =  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) )
8776, 86eqtrd 2498 . . . . . 6  |-  ( ph  ->  ( ( P  .\/  ( G `  P ) )  ./\  W )  =  ( ( P 
.\/  U )  ./\  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
) ) )
8871, 87eqtrd 2498 . . . . 5  |-  ( ph  ->  ( R `  G
)  =  ( ( P  .\/  U ) 
./\  ( ( P 
.\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) )
8988eqcomd 2465 . . . 4  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) )  =  ( R `  G ) )
9068, 89breqtrd 4480 . . 3  |-  ( ph  ->  U  .<_  ( R `  G ) )
91 hlatl 35228 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
922, 91syl 16 . . . 4  |-  ( ph  ->  K  e.  AtLat )
93 hlop 35230 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
942, 93syl 16 . . . . . . . . 9  |-  ( ph  ->  K  e.  OP )
95 eqid 2457 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
96 eqid 2457 . . . . . . . . . 10  |-  ( lt
`  K )  =  ( lt `  K
)
9795, 96, 80ltat 35159 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  U  e.  A )  ->  ( 0. `  K
) ( lt `  K ) U )
9894, 12, 97syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) U )
99 hlpos 35233 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Poset )
1002, 99syl 16 . . . . . . . . 9  |-  ( ph  ->  K  e.  Poset )
1017, 95op0cl 35052 . . . . . . . . . 10  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
10294, 101syl 16 . . . . . . . . 9  |-  ( ph  ->  ( 0. `  K
)  e.  ( Base `  K ) )
1037, 27, 28, 29trlcl 36032 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
1041, 69, 103syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( R `  G
)  e.  ( Base `  K ) )
1057, 15, 96pltletr 15728 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  (
( 0. `  K
)  e.  ( Base `  K )  /\  U  e.  ( Base `  K
)  /\  ( R `  G )  e.  (
Base `  K )
) )  ->  (
( ( 0. `  K ) ( lt
`  K ) U  /\  U  .<_  ( R `
 G ) )  ->  ( 0. `  K ) ( lt
`  K ) ( R `  G ) ) )
106100, 102, 14, 104, 105syl13anc 1230 . . . . . . . 8  |-  ( ph  ->  ( ( ( 0.
`  K ) ( lt `  K ) U  /\  U  .<_  ( R `  G ) )  ->  ( 0. `  K ) ( lt
`  K ) ( R `  G ) ) )
10798, 90, 106mp2and 679 . . . . . . 7  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) ( R `
 G ) )
1087, 96, 95opltn0 35058 . . . . . . . 8  |-  ( ( K  e.  OP  /\  ( R `  G )  e.  ( Base `  K
) )  ->  (
( 0. `  K
) ( lt `  K ) ( R `
 G )  <->  ( R `  G )  =/=  ( 0. `  K ) ) )
10994, 104, 108syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( 0. `  K ) ( lt
`  K ) ( R `  G )  <-> 
( R `  G
)  =/=  ( 0.
`  K ) ) )
110107, 109mpbid 210 . . . . . 6  |-  ( ph  ->  ( R `  G
)  =/=  ( 0.
`  K ) )
111110neneqd 2659 . . . . 5  |-  ( ph  ->  -.  ( R `  G )  =  ( 0. `  K ) )
11295, 8, 27, 28, 29trlator0 36039 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( ( R `  G )  e.  A  \/  ( R `  G )  =  ( 0. `  K ) ) )
1131, 69, 112syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( R `  G )  e.  A  \/  ( R `  G
)  =  ( 0.
`  K ) ) )
114113orcomd 388 . . . . . 6  |-  ( ph  ->  ( ( R `  G )  =  ( 0. `  K )  \/  ( R `  G )  e.  A
) )
115114ord 377 . . . . 5  |-  ( ph  ->  ( -.  ( R `
 G )  =  ( 0. `  K
)  ->  ( R `  G )  e.  A
) )
116111, 115mpd 15 . . . 4  |-  ( ph  ->  ( R `  G
)  e.  A )
11715, 8atcmp 35179 . . . 4  |-  ( ( K  e.  AtLat  /\  U  e.  A  /\  ( R `  G )  e.  A )  ->  ( U  .<_  ( R `  G )  <->  U  =  ( R `  G ) ) )
11892, 12, 116, 117syl3anc 1228 . . 3  |-  ( ph  ->  ( U  .<_  ( R `
 G )  <->  U  =  ( R `  G ) ) )
11990, 118mpbid 210 . 2  |-  ( ph  ->  U  =  ( R `
 G ) )
120119eqcomd 2465 1  |-  ( ph  ->  ( R `  G
)  =  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   Basecbs 14644   lecple 14719   Posetcpo 15696   ltcplt 15697   joincjn 15700   meetcmee 15701   0.cp0 15794   Latclat 15802   OPcops 35040   OLcol 35042   Atomscatm 35131   AtLatcal 35132   HLchlt 35218   LHypclh 35851   LTrncltrn 35968   trLctrl 36026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-map 7440  df-preset 15684  df-poset 15702  df-plt 15715  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-p0 15796  df-p1 15797  df-lat 15803  df-clat 15865  df-oposet 35044  df-ol 35046  df-oml 35047  df-covers 35134  df-ats 35135  df-atl 35166  df-cvlat 35190  df-hlat 35219  df-psubsp 35370  df-pmap 35371  df-padd 35663  df-lhyp 35855  df-laut 35856  df-ldil 35971  df-ltrn 35972  df-trl 36027
This theorem is referenced by:  dia2dimlem5  36938
  Copyright terms: Public domain W3C validator