Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem1 Structured version   Unicode version

Theorem dia2dimlem1 34544
Description: Lemma for dia2dim 34557. Show properties of the auxiliary atom  Q. Part of proof of Lemma M in [Crawley] p. 121 line 3. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem1.l  |-  .<_  =  ( le `  K )
dia2dimlem1.j  |-  .\/  =  ( join `  K )
dia2dimlem1.m  |-  ./\  =  ( meet `  K )
dia2dimlem1.a  |-  A  =  ( Atoms `  K )
dia2dimlem1.h  |-  H  =  ( LHyp `  K
)
dia2dimlem1.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem1.r  |-  R  =  ( ( trL `  K
) `  W )
dia2dimlem1.q  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
dia2dimlem1.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem1.u  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
dia2dimlem1.v  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
dia2dimlem1.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem1.f  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
dia2dimlem1.rf  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
dia2dimlem1.uv  |-  ( ph  ->  U  =/=  V )
dia2dimlem1.ru  |-  ( ph  ->  ( R `  F
)  =/=  U )
Assertion
Ref Expression
dia2dimlem1  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )

Proof of Theorem dia2dimlem1
StepHypRef Expression
1 dia2dimlem1.q . . 3  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
2 dia2dimlem1.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
32simpld 460 . . . 4  |-  ( ph  ->  K  e.  HL )
4 dia2dimlem1.p . . . . 5  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
54simpld 460 . . . 4  |-  ( ph  ->  P  e.  A )
6 dia2dimlem1.f . . . . 5  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
7 dia2dimlem1.l . . . . . 6  |-  .<_  =  ( le `  K )
8 dia2dimlem1.a . . . . . 6  |-  A  =  ( Atoms `  K )
9 dia2dimlem1.h . . . . . 6  |-  H  =  ( LHyp `  K
)
10 dia2dimlem1.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
11 dia2dimlem1.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
127, 8, 9, 10, 11trlat 33647 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
132, 4, 6, 12syl3anc 1264 . . . 4  |-  ( ph  ->  ( R `  F
)  e.  A )
14 dia2dimlem1.u . . . . 5  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
1514simpld 460 . . . 4  |-  ( ph  ->  U  e.  A )
166simpld 460 . . . . . 6  |-  ( ph  ->  F  e.  T )
177, 8, 9, 10ltrnel 33616 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
182, 16, 4, 17syl3anc 1264 . . . . 5  |-  ( ph  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
1918simpld 460 . . . 4  |-  ( ph  ->  ( F `  P
)  e.  A )
20 dia2dimlem1.v . . . . 5  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
2120simpld 460 . . . 4  |-  ( ph  ->  V  e.  A )
224simprd 464 . . . . . 6  |-  ( ph  ->  -.  P  .<_  W )
237, 9, 10, 11trlle 33662 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
242, 16, 23syl2anc 665 . . . . . . . 8  |-  ( ph  ->  ( R `  F
)  .<_  W )
2514simprd 464 . . . . . . . 8  |-  ( ph  ->  U  .<_  W )
26 hllat 32841 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
273, 26syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  Lat )
28 eqid 2428 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
2928, 8atbase 32767 . . . . . . . . . 10  |-  ( ( R `  F )  e.  A  ->  ( R `  F )  e.  ( Base `  K
) )
3013, 29syl 17 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  e.  ( Base `  K ) )
3128, 8atbase 32767 . . . . . . . . . 10  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
3215, 31syl 17 . . . . . . . . 9  |-  ( ph  ->  U  e.  ( Base `  K ) )
332simprd 464 . . . . . . . . . 10  |-  ( ph  ->  W  e.  H )
3428, 9lhpbase 33475 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3533, 34syl 17 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( Base `  K ) )
36 dia2dimlem1.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
3728, 7, 36latjle12 16251 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( R `  F )  e.  (
Base `  K )  /\  U  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( ( ( R `  F ) 
.<_  W  /\  U  .<_  W )  <->  ( ( R `
 F )  .\/  U )  .<_  W )
)
3827, 30, 32, 35, 37syl13anc 1266 . . . . . . . 8  |-  ( ph  ->  ( ( ( R `
 F )  .<_  W  /\  U  .<_  W )  <-> 
( ( R `  F )  .\/  U
)  .<_  W ) )
3924, 25, 38mpbi2and 929 . . . . . . 7  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  .<_  W )
4028, 8atbase 32767 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
415, 40syl 17 . . . . . . . 8  |-  ( ph  ->  P  e.  ( Base `  K ) )
4228, 36, 8hlatjcl 32844 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( R `  F )  e.  A  /\  U  e.  A )  ->  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) )
433, 13, 15, 42syl3anc 1264 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  e.  ( Base `  K ) )
4428, 7lattr 16245 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( ( R `  F )  .\/  U
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( ( R `  F
)  .\/  U )  /\  ( ( R `  F )  .\/  U
)  .<_  W )  ->  P  .<_  W ) )
4527, 41, 43, 35, 44syl13anc 1266 . . . . . . 7  |-  ( ph  ->  ( ( P  .<_  ( ( R `  F
)  .\/  U )  /\  ( ( R `  F )  .\/  U
)  .<_  W )  ->  P  .<_  W ) )
4639, 45mpan2d 678 . . . . . 6  |-  ( ph  ->  ( P  .<_  ( ( R `  F ) 
.\/  U )  ->  P  .<_  W ) )
4722, 46mtod 180 . . . . 5  |-  ( ph  ->  -.  P  .<_  ( ( R `  F ) 
.\/  U ) )
4820simprd 464 . . . . . . 7  |-  ( ph  ->  V  .<_  W )
4918simprd 464 . . . . . . 7  |-  ( ph  ->  -.  ( F `  P )  .<_  W )
50 nbrne2 4385 . . . . . . 7  |-  ( ( V  .<_  W  /\  -.  ( F `  P
)  .<_  W )  ->  V  =/=  ( F `  P ) )
5148, 49, 50syl2anc 665 . . . . . 6  |-  ( ph  ->  V  =/=  ( F `
 P ) )
5251necomd 2656 . . . . 5  |-  ( ph  ->  ( F `  P
)  =/=  V )
5347, 52jca 534 . . . 4  |-  ( ph  ->  ( -.  P  .<_  ( ( R `  F
)  .\/  U )  /\  ( F `  P
)  =/=  V ) )
5427adantr 466 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  K  e.  Lat )
5541adantr 466 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  P  e.  ( Base `  K )
)
5628, 36, 8hlatjcl 32844 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  V  e.  A  /\  U  e.  A )  ->  ( V  .\/  U
)  e.  ( Base `  K ) )
573, 21, 15, 56syl3anc 1264 . . . . . . . . 9  |-  ( ph  ->  ( V  .\/  U
)  e.  ( Base `  K ) )
5857adantr 466 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( V  .\/  U )  e.  (
Base `  K )
)
5935adantr 466 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  W  e.  ( Base `  K )
)
607, 36, 8hlatlej2 32853 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  V  .<_  ( ( F `  P )  .\/  V
) )
613, 19, 21, 60syl3anc 1264 . . . . . . . . . . 11  |-  ( ph  ->  V  .<_  ( ( F `  P )  .\/  V ) )
6261adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  V  .<_  ( ( F `  P
)  .\/  V )
)
63 simpr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)
6462, 63breqtrrd 4393 . . . . . . . . 9  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  V  .<_  ( P  .\/  U ) )
65 dia2dimlem1.uv . . . . . . . . . . . 12  |-  ( ph  ->  U  =/=  V )
6665necomd 2656 . . . . . . . . . . 11  |-  ( ph  ->  V  =/=  U )
677, 36, 8hlatexch2 32873 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  P  e.  A  /\  U  e.  A
)  /\  V  =/=  U )  ->  ( V  .<_  ( P  .\/  U
)  ->  P  .<_  ( V  .\/  U ) ) )
683, 21, 5, 15, 66, 67syl131anc 1277 . . . . . . . . . 10  |-  ( ph  ->  ( V  .<_  ( P 
.\/  U )  ->  P  .<_  ( V  .\/  U ) ) )
6968adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( V  .<_  ( P  .\/  U
)  ->  P  .<_  ( V  .\/  U ) ) )
7064, 69mpd 15 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  P  .<_  ( V  .\/  U ) )
7128, 8atbase 32767 . . . . . . . . . . . 12  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
7221, 71syl 17 . . . . . . . . . . 11  |-  ( ph  ->  V  e.  ( Base `  K ) )
7328, 7, 36latjle12 16251 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( V  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( V  .<_  W  /\  U  .<_  W )  <-> 
( V  .\/  U
)  .<_  W ) )
7427, 72, 32, 35, 73syl13anc 1266 . . . . . . . . . 10  |-  ( ph  ->  ( ( V  .<_  W  /\  U  .<_  W )  <-> 
( V  .\/  U
)  .<_  W ) )
7548, 25, 74mpbi2and 929 . . . . . . . . 9  |-  ( ph  ->  ( V  .\/  U
)  .<_  W )
7675adantr 466 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( V  .\/  U )  .<_  W )
7728, 7, 54, 55, 58, 59, 70, 76lattrd 16247 . . . . . . 7  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  P  .<_  W )
7877ex 435 . . . . . 6  |-  ( ph  ->  ( ( P  .\/  U )  =  ( ( F `  P ) 
.\/  V )  ->  P  .<_  W ) )
7978necon3bd 2615 . . . . 5  |-  ( ph  ->  ( -.  P  .<_  W  ->  ( P  .\/  U )  =/=  ( ( F `  P ) 
.\/  V ) ) )
8022, 79mpd 15 . . . 4  |-  ( ph  ->  ( P  .\/  U
)  =/=  ( ( F `  P ) 
.\/  V ) )
817, 36, 8hlatlej2 32853 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( F `  P
)  .<_  ( P  .\/  ( F `  P ) ) )
823, 5, 19, 81syl3anc 1264 . . . . . 6  |-  ( ph  ->  ( F `  P
)  .<_  ( P  .\/  ( F `  P ) ) )
83 dia2dimlem1.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
847, 36, 83, 8, 9, 10, 11trlval2 33641 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
852, 16, 4, 84syl3anc 1264 . . . . . . . 8  |-  ( ph  ->  ( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W ) )
8685oveq2d 6265 . . . . . . 7  |-  ( ph  ->  ( P  .\/  ( R `  F )
)  =  ( P 
.\/  ( ( P 
.\/  ( F `  P ) )  ./\  W ) ) )
8728, 36, 8hlatjcl 32844 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
883, 5, 19, 87syl3anc 1264 . . . . . . . . 9  |-  ( ph  ->  ( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
897, 36, 8hlatlej1 32852 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  ->  P  .<_  ( P  .\/  ( F `  P ) ) )
903, 5, 19, 89syl3anc 1264 . . . . . . . . 9  |-  ( ph  ->  P  .<_  ( P  .\/  ( F `  P
) ) )
9128, 7, 36, 83, 8atmod3i1 33341 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( ( P 
.\/  ( F `  P ) )  ./\  W ) )  =  ( ( P  .\/  ( F `  P )
)  ./\  ( P  .\/  W ) ) )
923, 5, 88, 35, 90, 91syl131anc 1277 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  (
( P  .\/  ( F `  P )
)  ./\  W )
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  ( P  .\/  W ) ) )
93 eqid 2428 . . . . . . . . . . . 12  |-  ( 1.
`  K )  =  ( 1. `  K
)
947, 36, 93, 8, 9lhpjat2 33498 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  .\/  W
)  =  ( 1.
`  K ) )
952, 4, 94syl2anc 665 . . . . . . . . . 10  |-  ( ph  ->  ( P  .\/  W
)  =  ( 1.
`  K ) )
9695oveq2d 6265 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( P  .\/  W ) )  =  ( ( P  .\/  ( F `  P ) )  ./\  ( 1. `  K ) ) )
97 hlol 32839 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  OL )
983, 97syl 17 . . . . . . . . . 10  |-  ( ph  ->  K  e.  OL )
9928, 83, 93olm11 32705 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
) )  ->  (
( P  .\/  ( F `  P )
)  ./\  ( 1. `  K ) )  =  ( P  .\/  ( F `  P )
) )
10098, 88, 99syl2anc 665 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( 1. `  K ) )  =  ( P  .\/  ( F `  P )
) )
10196, 100eqtrd 2462 . . . . . . . 8  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( P  .\/  W ) )  =  ( P  .\/  ( F `  P )
) )
10292, 101eqtrd 2462 . . . . . . 7  |-  ( ph  ->  ( P  .\/  (
( P  .\/  ( F `  P )
)  ./\  W )
)  =  ( P 
.\/  ( F `  P ) ) )
10386, 102eqtrd 2462 . . . . . 6  |-  ( ph  ->  ( P  .\/  ( R `  F )
)  =  ( P 
.\/  ( F `  P ) ) )
10482, 103breqtrrd 4393 . . . . 5  |-  ( ph  ->  ( F `  P
)  .<_  ( P  .\/  ( R `  F ) ) )
105 dia2dimlem1.rf . . . . . . 7  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
10636, 8hlatjcom 32845 . . . . . . . 8  |-  ( ( K  e.  HL  /\  U  e.  A  /\  V  e.  A )  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
1073, 15, 21, 106syl3anc 1264 . . . . . . 7  |-  ( ph  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
108105, 107breqtrd 4391 . . . . . 6  |-  ( ph  ->  ( R `  F
)  .<_  ( V  .\/  U ) )
109 dia2dimlem1.ru . . . . . . 7  |-  ( ph  ->  ( R `  F
)  =/=  U )
1107, 36, 8hlatexch2 32873 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  V  e.  A  /\  U  e.  A
)  /\  ( R `  F )  =/=  U
)  ->  ( ( R `  F )  .<_  ( V  .\/  U
)  ->  V  .<_  ( ( R `  F
)  .\/  U )
) )
1113, 13, 21, 15, 109, 110syl131anc 1277 . . . . . 6  |-  ( ph  ->  ( ( R `  F )  .<_  ( V 
.\/  U )  ->  V  .<_  ( ( R `
 F )  .\/  U ) ) )
112108, 111mpd 15 . . . . 5  |-  ( ph  ->  V  .<_  ( ( R `  F )  .\/  U ) )
113104, 112jca 534 . . . 4  |-  ( ph  ->  ( ( F `  P )  .<_  ( P 
.\/  ( R `  F ) )  /\  V  .<_  ( ( R `
 F )  .\/  U ) ) )
1147, 36, 83, 8ps-2c 33005 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  ( R `  F )  e.  A )  /\  ( U  e.  A  /\  ( F `  P
)  e.  A  /\  V  e.  A )  /\  ( ( -.  P  .<_  ( ( R `  F )  .\/  U
)  /\  ( F `  P )  =/=  V
)  /\  ( P  .\/  U )  =/=  (
( F `  P
)  .\/  V )  /\  ( ( F `  P )  .<_  ( P 
.\/  ( R `  F ) )  /\  V  .<_  ( ( R `
 F )  .\/  U ) ) ) )  ->  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) )  e.  A
)
1153, 5, 13, 15, 19, 21, 53, 80, 113, 114syl333anc 1296 . . 3  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  e.  A )
1161, 115syl5eqel 2510 . 2  |-  ( ph  ->  Q  e.  A )
11728, 36, 8hlatjcl 32844 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
1183, 5, 15, 117syl3anc 1264 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
11928, 36, 8hlatjcl 32844 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )
1203, 19, 21, 119syl3anc 1264 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  P )  .\/  V
)  e.  ( Base `  K ) )
12128, 7, 83latmle1 16265 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  ( ( F `  P )  .\/  V )  e.  (
Base `  K )
)  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V
) )  .<_  ( P 
.\/  U ) )
12227, 118, 120, 121syl3anc 1264 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  .<_  ( P  .\/  U ) )
1231, 122syl5eqbr 4400 . . . . . . . . . 10  |-  ( ph  ->  Q  .<_  ( P  .\/  U ) )
12428, 8atbase 32767 . . . . . . . . . . . . 13  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
125116, 124syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  ( Base `  K ) )
12628, 7, 83latlem12 16267 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( Q  .<_  ( P 
.\/  U )  /\  Q  .<_  W )  <->  Q  .<_  ( ( P  .\/  U
)  ./\  W )
) )
12727, 125, 118, 35, 126syl13anc 1266 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  .<_  ( P  .\/  U )  /\  Q  .<_  W )  <-> 
Q  .<_  ( ( P 
.\/  U )  ./\  W ) ) )
128127biimpd 210 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  .<_  ( P  .\/  U )  /\  Q  .<_  W )  ->  Q  .<_  ( ( P  .\/  U ) 
./\  W ) ) )
129123, 128mpand 679 . . . . . . . . 9  |-  ( ph  ->  ( Q  .<_  W  ->  Q  .<_  ( ( P 
.\/  U )  ./\  W ) ) )
130129imp 430 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  ( ( P  .\/  U
)  ./\  W )
)
131 eqid 2428 . . . . . . . . . . . . 13  |-  ( 0.
`  K )  =  ( 0. `  K
)
1327, 83, 131, 8, 9lhpmat 33507 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  ./\  W
)  =  ( 0.
`  K ) )
1332, 4, 132syl2anc 665 . . . . . . . . . . 11  |-  ( ph  ->  ( P  ./\  W
)  =  ( 0.
`  K ) )
134133oveq1d 6264 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  ./\  W )  .\/  U )  =  ( ( 0.
`  K )  .\/  U ) )
13528, 7, 36, 83, 8atmod4i1 33343 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  P  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) )  /\  U  .<_  W )  -> 
( ( P  ./\  W )  .\/  U )  =  ( ( P 
.\/  U )  ./\  W ) )
1363, 15, 41, 35, 25, 135syl131anc 1277 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  ./\  W )  .\/  U )  =  ( ( P 
.\/  U )  ./\  W ) )
13728, 36, 131olj02 32704 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  U  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  U
)  =  U )
13898, 32, 137syl2anc 665 . . . . . . . . . 10  |-  ( ph  ->  ( ( 0. `  K )  .\/  U
)  =  U )
139134, 136, 1383eqtr3d 2470 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  U )  ./\  W )  =  U )
140139adantr 466 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  ( ( P  .\/  U )  ./\  W )  =  U )
141130, 140breqtrd 4391 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  U )
142 hlatl 32838 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
1433, 142syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  AtLat )
144143adantr 466 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  K  e.  AtLat
)
145116adantr 466 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  e.  A )
14615adantr 466 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  U  e.  A )
1477, 8atcmp 32789 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  Q  e.  A  /\  U  e.  A )  ->  ( Q  .<_  U  <->  Q  =  U ) )
148144, 145, 146, 147syl3anc 1264 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  ( Q  .<_  U  <->  Q  =  U
) )
149141, 148mpbid 213 . . . . . 6  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  =  U )
15028, 7, 83latmle2 16266 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  ( ( F `  P )  .\/  V )  e.  (
Base `  K )
)  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V
) )  .<_  ( ( F `  P ) 
.\/  V ) )
15127, 118, 120, 150syl3anc 1264 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  .<_  ( ( F `  P )  .\/  V
) )
1521, 151syl5eqbr 4400 . . . . . . . . . 10  |-  ( ph  ->  Q  .<_  ( ( F `  P )  .\/  V ) )
15328, 7, 83latlem12 16267 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  ( ( F `  P )  .\/  V
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( Q  .<_  ( ( F `  P
)  .\/  V )  /\  Q  .<_  W )  <-> 
Q  .<_  ( ( ( F `  P ) 
.\/  V )  ./\  W ) ) )
15427, 125, 120, 35, 153syl13anc 1266 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  .<_  ( ( F `  P
)  .\/  V )  /\  Q  .<_  W )  <-> 
Q  .<_  ( ( ( F `  P ) 
.\/  V )  ./\  W ) ) )
155154biimpd 210 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  .<_  ( ( F `  P
)  .\/  V )  /\  Q  .<_  W )  ->  Q  .<_  ( ( ( F `  P
)  .\/  V )  ./\  W ) ) )
156152, 155mpand 679 . . . . . . . . 9  |-  ( ph  ->  ( Q  .<_  W  ->  Q  .<_  ( ( ( F `  P ) 
.\/  V )  ./\  W ) ) )
157156imp 430 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  ( ( ( F `  P )  .\/  V
)  ./\  W )
)
1587, 83, 131, 8, 9lhpmat 33507 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F `
 P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  -> 
( ( F `  P )  ./\  W
)  =  ( 0.
`  K ) )
1592, 18, 158syl2anc 665 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F `  P )  ./\  W
)  =  ( 0.
`  K ) )
160159oveq1d 6264 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 P )  ./\  W )  .\/  V )  =  ( ( 0.
`  K )  .\/  V ) )
16128, 8atbase 32767 . . . . . . . . . . . 12  |-  ( ( F `  P )  e.  A  ->  ( F `  P )  e.  ( Base `  K
) )
16219, 161syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  P
)  e.  ( Base `  K ) )
16328, 7, 36, 83, 8atmod4i1 33343 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  ( F `  P
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  V  .<_  W )  ->  (
( ( F `  P )  ./\  W
)  .\/  V )  =  ( ( ( F `  P ) 
.\/  V )  ./\  W ) )
1643, 21, 162, 35, 48, 163syl131anc 1277 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 P )  ./\  W )  .\/  V )  =  ( ( ( F `  P ) 
.\/  V )  ./\  W ) )
16528, 36, 131olj02 32704 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  V  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  V
)  =  V )
16698, 72, 165syl2anc 665 . . . . . . . . . 10  |-  ( ph  ->  ( ( 0. `  K )  .\/  V
)  =  V )
167160, 164, 1663eqtr3d 2470 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F `
 P )  .\/  V )  ./\  W )  =  V )
168167adantr 466 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  ( (
( F `  P
)  .\/  V )  ./\  W )  =  V )
169157, 168breqtrd 4391 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  V )
17021adantr 466 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  V  e.  A )
1717, 8atcmp 32789 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  Q  e.  A  /\  V  e.  A )  ->  ( Q  .<_  V  <->  Q  =  V ) )
172144, 145, 170, 171syl3anc 1264 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  ( Q  .<_  V  <->  Q  =  V
) )
173169, 172mpbid 213 . . . . . 6  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  =  V )
174149, 173eqtr3d 2464 . . . . 5  |-  ( (
ph  /\  Q  .<_  W )  ->  U  =  V )
175174ex 435 . . . 4  |-  ( ph  ->  ( Q  .<_  W  ->  U  =  V )
)
176175necon3ad 2614 . . 3  |-  ( ph  ->  ( U  =/=  V  ->  -.  Q  .<_  W ) )
17765, 176mpd 15 . 2  |-  ( ph  ->  -.  Q  .<_  W )
178116, 177jca 534 1  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2599   class class class wbr 4366   ` cfv 5544  (class class class)co 6249   Basecbs 15064   lecple 15140   joincjn 16132   meetcmee 16133   0.cp0 16226   1.cp1 16227   Latclat 16234   OLcol 32652   Atomscatm 32741   AtLatcal 32742   HLchlt 32828   LHypclh 33461   LTrncltrn 33578   trLctrl 33636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-iun 4244  df-iin 4245  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-1st 6751  df-2nd 6752  df-map 7429  df-preset 16116  df-poset 16134  df-plt 16147  df-lub 16163  df-glb 16164  df-join 16165  df-meet 16166  df-p0 16228  df-p1 16229  df-lat 16235  df-clat 16297  df-oposet 32654  df-ol 32656  df-oml 32657  df-covers 32744  df-ats 32745  df-atl 32776  df-cvlat 32800  df-hlat 32829  df-llines 32975  df-psubsp 32980  df-pmap 32981  df-padd 33273  df-lhyp 33465  df-laut 33466  df-ldil 33581  df-ltrn 33582  df-trl 33637
This theorem is referenced by:  dia2dimlem3  34546  dia2dimlem6  34549
  Copyright terms: Public domain W3C validator