MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrub Structured version   Unicode version

Theorem dgrub 22497
Description: If the  M-th coefficient of  F is nonzero, then the degree of  F is at least  M. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1  |-  A  =  (coeff `  F )
dgrub.2  |-  N  =  (deg `  F )
Assertion
Ref Expression
dgrub  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  M  <_  N )

Proof of Theorem dgrub
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 995 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  F  e.  (Poly `  S )
)
2 simp2 996 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  M  e.  NN0 )
3 dgrub.1 . . . . . . . . 9  |-  A  =  (coeff `  F )
43coef3 22495 . . . . . . . 8  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
51, 4syl 16 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  A : NN0 --> CC )
65, 2ffvelrnd 6013 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  ( A `  M )  e.  CC )
7 simp3 997 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  ( A `  M )  =/=  0 )
8 eldifsn 4136 . . . . . 6  |-  ( ( A `  M )  e.  ( CC  \  { 0 } )  <-> 
( ( A `  M )  e.  CC  /\  ( A `  M
)  =/=  0 ) )
96, 7, 8sylanbrc 664 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  ( A `  M )  e.  ( CC  \  {
0 } ) )
103coef 22493 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> ( S  u.  {
0 } ) )
11 ffn 5717 . . . . . 6  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  A  Fn  NN0 )
12 elpreima 5988 . . . . . 6  |-  ( A  Fn  NN0  ->  ( M  e.  ( `' A " ( CC  \  {
0 } ) )  <-> 
( M  e.  NN0  /\  ( A `  M
)  e.  ( CC 
\  { 0 } ) ) ) )
131, 10, 11, 124syl 21 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  ( M  e.  ( `' A " ( CC  \  { 0 } ) )  <->  ( M  e. 
NN0  /\  ( A `  M )  e.  ( CC  \  { 0 } ) ) ) )
142, 9, 13mpbir2and 920 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  M  e.  ( `' A "
( CC  \  {
0 } ) ) )
15 nn0ssre 10800 . . . . . . 7  |-  NN0  C_  RR
16 ltso 9663 . . . . . . 7  |-  <  Or  RR
17 soss 4804 . . . . . . 7  |-  ( NN0  C_  RR  ->  (  <  Or  RR  ->  <  Or  NN0 ) )
1815, 16, 17mp2 9 . . . . . 6  |-  <  Or  NN0
1918a1i 11 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  <  Or  NN0 )
20 0zd 10877 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  0  e.  ZZ )
21 cnvimass 5343 . . . . . . 7  |-  ( `' A " ( CC 
\  { 0 } ) )  C_  dom  A
22 fdm 5721 . . . . . . . 8  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  dom  A  = 
NN0 )
2310, 22syl 16 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  dom  A  = 
NN0 )
2421, 23syl5sseq 3534 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  ( `' A " ( CC  \  { 0 } ) )  C_  NN0 )
253dgrlem 22492 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  ( A : NN0 --> ( S  u.  { 0 } )  /\  E. n  e.  ZZ  A. x  e.  ( `' A " ( CC  \  { 0 } ) ) x  <_  n
) )
2625simprd 463 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  ZZ  A. x  e.  ( `' A "
( CC  \  {
0 } ) ) x  <_  n )
27 nn0uz 11119 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
2827uzsupss 11178 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  ( `' A " ( CC 
\  { 0 } ) )  C_  NN0  /\  E. n  e.  ZZ  A. x  e.  ( `' A " ( CC  \  { 0 } ) ) x  <_  n
)  ->  E. n  e.  NN0  ( A. x  e.  ( `' A "
( CC  \  {
0 } ) )  -.  n  <  x  /\  A. x  e.  NN0  ( x  <  n  ->  E. y  e.  ( `' A " ( CC 
\  { 0 } ) ) x  < 
y ) ) )
2920, 24, 26, 28syl3anc 1227 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  NN0  ( A. x  e.  ( `' A "
( CC  \  {
0 } ) )  -.  n  <  x  /\  A. x  e.  NN0  ( x  <  n  ->  E. y  e.  ( `' A " ( CC 
\  { 0 } ) ) x  < 
y ) ) )
3019, 29supub 7917 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  ( M  e.  ( `' A "
( CC  \  {
0 } ) )  ->  -.  sup (
( `' A "
( CC  \  {
0 } ) ) ,  NN0 ,  <  )  <  M ) )
311, 14, 30sylc 60 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  -.  sup ( ( `' A " ( CC  \  {
0 } ) ) ,  NN0 ,  <  )  <  M )
32 dgrub.2 . . . . . 6  |-  N  =  (deg `  F )
333dgrval 22491 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  =  sup (
( `' A "
( CC  \  {
0 } ) ) ,  NN0 ,  <  ) )
3432, 33syl5eq 2494 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  N  =  sup ( ( `' A " ( CC  \  {
0 } ) ) ,  NN0 ,  <  ) )
351, 34syl 16 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  N  =  sup ( ( `' A " ( CC 
\  { 0 } ) ) ,  NN0 ,  <  ) )
3635breq1d 4443 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  ( N  <  M  <->  sup (
( `' A "
( CC  \  {
0 } ) ) ,  NN0 ,  <  )  <  M ) )
3731, 36mtbird 301 . 2  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  -.  N  <  M )
382nn0red 10854 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  M  e.  RR )
39 dgrcl 22496 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
4032, 39syl5eqel 2533 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  N  e.  NN0 )
411, 40syl 16 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  N  e.  NN0 )
4241nn0red 10854 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  N  e.  RR )
4338, 42lenltd 9729 . 2  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  ( M  <_  N  <->  -.  N  <  M ) )
4437, 43mpbird 232 1  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  M  <_  N )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   A.wral 2791   E.wrex 2792    \ cdif 3455    u. cun 3456    C_ wss 3458   {csn 4010   class class class wbr 4433    Or wor 4785   `'ccnv 4984   dom cdm 4985   "cima 4988    Fn wfn 5569   -->wf 5570   ` cfv 5574   supcsup 7898   CCcc 9488   RRcr 9489   0cc0 9490    < clt 9626    <_ cle 9627   NN0cn0 10796   ZZcz 10865  Polycply 22447  coeffccoe 22449  degcdgr 22450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6521  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-oadd 7132  df-er 7309  df-map 7420  df-pm 7421  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-sup 7899  df-oi 7933  df-card 8318  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11086  df-rp 11225  df-fz 11677  df-fzo 11799  df-fl 11903  df-seq 12082  df-exp 12141  df-hash 12380  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-clim 13285  df-rlim 13286  df-sum 13483  df-0p 21943  df-ply 22451  df-coe 22453  df-dgr 22454
This theorem is referenced by:  dgrub2  22498  coeidlem  22500  coeid3  22503  dgreq  22507  coemullem  22512  coemulhi  22516  coemulc  22517  dgreq0  22527  dgrlt  22528  dgradd2  22530  dgrmul  22532  vieta1lem2  22572  aannenlem2  22590
  Copyright terms: Public domain W3C validator