Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgrsub2 Structured version   Unicode version

Theorem dgrsub2 29400
Description: Subtracting two polynomials with the same degree and top coefficient gives a polynomial of strictly lower degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Hypothesis
Ref Expression
dgrsub2.a  |-  N  =  (deg `  F )
Assertion
Ref Expression
dgrsub2  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  ( F  oF  -  G
) )  <  N
)

Proof of Theorem dgrsub2
StepHypRef Expression
1 simpr2 990 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  N  e.  NN )
2 dgr0 21672 . . . . 5  |-  (deg ` 
0p )  =  0
3 nngt0 10347 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
42, 3syl5eqbr 4322 . . . 4  |-  ( N  e.  NN  ->  (deg `  0p )  < 
N )
5 fveq2 5688 . . . . 5  |-  ( ( F  oF  -  G )  =  0p  ->  (deg `  ( F  oF  -  G
) )  =  (deg
`  0p ) )
65breq1d 4299 . . . 4  |-  ( ( F  oF  -  G )  =  0p  ->  ( (deg `  ( F  oF  -  G ) )  <  N  <->  (deg `  0p )  <  N
) )
74, 6syl5ibrcom 222 . . 3  |-  ( N  e.  NN  ->  (
( F  oF  -  G )  =  0p  ->  (deg `  ( F  oF  -  G ) )  <  N ) )
81, 7syl 16 . 2  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( F  oF  -  G )  =  0p  -> 
(deg `  ( F  oF  -  G
) )  <  N
) )
9 plyssc 21611 . . . . . . . 8  |-  (Poly `  S )  C_  (Poly `  CC )
109sseli 3349 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  F  e.  (Poly `  CC ) )
11 plyssc 21611 . . . . . . . 8  |-  (Poly `  T )  C_  (Poly `  CC )
1211sseli 3349 . . . . . . 7  |-  ( G  e.  (Poly `  T
)  ->  G  e.  (Poly `  CC ) )
13 eqid 2441 . . . . . . . 8  |-  (deg `  F )  =  (deg
`  F )
14 eqid 2441 . . . . . . . 8  |-  (deg `  G )  =  (deg
`  G )
1513, 14dgrsub 21682 . . . . . . 7  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )
)  ->  (deg `  ( F  oF  -  G
) )  <_  if ( (deg `  F )  <_  (deg `  G ) ,  (deg `  G ) ,  (deg `  F )
) )
1610, 12, 15syl2an 474 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  ->  (deg `  ( F  oF  -  G
) )  <_  if ( (deg `  F )  <_  (deg `  G ) ,  (deg `  G ) ,  (deg `  F )
) )
1716adantr 462 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  ( F  oF  -  G
) )  <_  if ( (deg `  F )  <_  (deg `  G ) ,  (deg `  G ) ,  (deg `  F )
) )
18 simpr1 989 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  G )  =  N )
19 dgrsub2.a . . . . . . . . 9  |-  N  =  (deg `  F )
2019eqcomi 2445 . . . . . . . 8  |-  (deg `  F )  =  N
2120a1i 11 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  F )  =  N )
2218, 21ifeq12d 3806 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  if ( (deg `  F
)  <_  (deg `  G
) ,  (deg `  G ) ,  (deg
`  F ) )  =  if ( (deg
`  F )  <_ 
(deg `  G ) ,  N ,  N ) )
23 ifid 3823 . . . . . 6  |-  if ( (deg `  F )  <_  (deg `  G ) ,  N ,  N )  =  N
2422, 23syl6eq 2489 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  if ( (deg `  F
)  <_  (deg `  G
) ,  (deg `  G ) ,  (deg
`  F ) )  =  N )
2517, 24breqtrd 4313 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  ( F  oF  -  G
) )  <_  N
)
26 eqid 2441 . . . . . . . . 9  |-  (coeff `  F )  =  (coeff `  F )
27 eqid 2441 . . . . . . . . 9  |-  (coeff `  G )  =  (coeff `  G )
2826, 27coesub 21667 . . . . . . . 8  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )
)  ->  (coeff `  ( F  oF  -  G
) )  =  ( (coeff `  F )  oF  -  (coeff `  G ) ) )
2910, 12, 28syl2an 474 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  ->  (coeff `  ( F  oF  -  G
) )  =  ( (coeff `  F )  oF  -  (coeff `  G ) ) )
3029adantr 462 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  ( F  oF  -  G
) )  =  ( (coeff `  F )  oF  -  (coeff `  G ) ) )
3130fveq1d 5690 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( (coeff `  ( F  oF  -  G
) ) `  N
)  =  ( ( (coeff `  F )  oF  -  (coeff `  G ) ) `  N ) )
321nnnn0d 10632 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  N  e.  NN0 )
3326coef3 21643 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> CC )
3433ad2antrr 720 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  F ) : NN0 --> CC )
35 ffn 5556 . . . . . . . 8  |-  ( (coeff `  F ) : NN0 --> CC 
->  (coeff `  F )  Fn  NN0 )
3634, 35syl 16 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  F )  Fn  NN0 )
3727coef3 21643 . . . . . . . . 9  |-  ( G  e.  (Poly `  T
)  ->  (coeff `  G
) : NN0 --> CC )
3837ad2antlr 721 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  G ) : NN0 --> CC )
39 ffn 5556 . . . . . . . 8  |-  ( (coeff `  G ) : NN0 --> CC 
->  (coeff `  G )  Fn  NN0 )
4038, 39syl 16 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  G )  Fn  NN0 )
41 nn0ex 10581 . . . . . . . 8  |-  NN0  e.  _V
4241a1i 11 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  NN0  e.  _V )
43 inidm 3556 . . . . . . 7  |-  ( NN0 
i^i  NN0 )  =  NN0
44 simplr3 1027 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T ) )  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F ) `  N
)  =  ( (coeff `  G ) `  N
) ) )  /\  N  e.  NN0 )  -> 
( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) )
45 eqidd 2442 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T ) )  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F ) `  N
)  =  ( (coeff `  G ) `  N
) ) )  /\  N  e.  NN0 )  -> 
( (coeff `  G
) `  N )  =  ( (coeff `  G ) `  N
) )
4636, 40, 42, 42, 43, 44, 45ofval 6328 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T ) )  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F ) `  N
)  =  ( (coeff `  G ) `  N
) ) )  /\  N  e.  NN0 )  -> 
( ( (coeff `  F )  oF  -  (coeff `  G
) ) `  N
)  =  ( ( (coeff `  G ) `  N )  -  (
(coeff `  G ) `  N ) ) )
4732, 46mpdan 663 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( (coeff `  F )  oF  -  (coeff `  G
) ) `  N
)  =  ( ( (coeff `  G ) `  N )  -  (
(coeff `  G ) `  N ) ) )
4838, 32ffvelrnd 5841 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( (coeff `  G
) `  N )  e.  CC )
4948subidd 9703 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( (coeff `  G ) `  N
)  -  ( (coeff `  G ) `  N
) )  =  0 )
5031, 47, 493eqtrd 2477 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( (coeff `  ( F  oF  -  G
) ) `  N
)  =  0 )
51 plysubcl 21633 . . . . . . 7  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )
)  ->  ( F  oF  -  G
)  e.  (Poly `  CC ) )
5210, 12, 51syl2an 474 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  ->  ( F  oF  -  G
)  e.  (Poly `  CC ) )
5352adantr 462 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( F  oF  -  G )  e.  (Poly `  CC )
)
54 eqid 2441 . . . . . 6  |-  (deg `  ( F  oF  -  G ) )  =  (deg `  ( F  oF  -  G
) )
55 eqid 2441 . . . . . 6  |-  (coeff `  ( F  oF  -  G ) )  =  (coeff `  ( F  oF  -  G
) )
5654, 55dgrlt 21676 . . . . 5  |-  ( ( ( F  oF  -  G )  e.  (Poly `  CC )  /\  N  e.  NN0 )  ->  ( ( ( F  oF  -  G )  =  0p  \/  (deg `  ( F  oF  -  G ) )  < 
N )  <->  ( (deg `  ( F  oF  -  G ) )  <_  N  /\  (
(coeff `  ( F  oF  -  G
) ) `  N
)  =  0 ) ) )
5753, 32, 56syl2anc 656 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( ( F  oF  -  G
)  =  0p  \/  (deg `  ( F  oF  -  G
) )  <  N
)  <->  ( (deg `  ( F  oF  -  G ) )  <_  N  /\  ( (coeff `  ( F  oF  -  G ) ) `  N )  =  0 ) ) )
5825, 50, 57mpbir2and 908 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( F  oF  -  G )  =  0p  \/  (deg `  ( F  oF  -  G
) )  <  N
) )
5958ord 377 . 2  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( -.  ( F  oF  -  G
)  =  0p  ->  (deg `  ( F  oF  -  G
) )  <  N
) )
608, 59pm2.61d 158 1  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  ( F  oF  -  G
) )  <  N
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   _Vcvv 2970   ifcif 3788   class class class wbr 4289    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090    oFcof 6317   CCcc 9276   0cc0 9278    < clt 9414    <_ cle 9415    - cmin 9591   NNcn 10318   NN0cn0 10575   0pc0p 21047  Polycply 21595  coeffccoe 21597  degcdgr 21598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-rlim 12963  df-sum 13160  df-0p 21048  df-ply 21599  df-coe 21601  df-dgr 21602
This theorem is referenced by:  mpaaeu  29416
  Copyright terms: Public domain W3C validator