MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrlem Structured version   Unicode version

Theorem dgrlem 22389
Description: Lemma for dgrcl 22393 and similar theorems. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypothesis
Ref Expression
dgrval.1  |-  A  =  (coeff `  F )
Assertion
Ref Expression
dgrlem  |-  ( F  e.  (Poly `  S
)  ->  ( A : NN0 --> ( S  u.  { 0 } )  /\  E. n  e.  ZZ  A. x  e.  ( `' A " ( CC  \  { 0 } ) ) x  <_  n
) )
Distinct variable groups:    x, n, A    n, F, x    S, n, x

Proof of Theorem dgrlem
Dummy variables  a 
k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply2 22356 . . . 4  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
21simprbi 464 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
3 simplrr 760 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
4 simpll 753 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  F  e.  (Poly `  S
) )
5 plybss 22354 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
64, 5syl 16 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  S  C_  CC )
7 0cnd 9589 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
0  e.  CC )
87snssd 4172 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  { 0 }  C_  CC )
96, 8unssd 3680 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( S  u.  {
0 } )  C_  CC )
10 cnex 9573 . . . . . . . . 9  |-  CC  e.  _V
11 ssexg 4593 . . . . . . . . 9  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
129, 10, 11sylancl 662 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( S  u.  {
0 } )  e. 
_V )
13 nn0ex 10801 . . . . . . . 8  |-  NN0  e.  _V
14 elmapg 7433 . . . . . . . 8  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  a : NN0 --> ( S  u.  { 0 } ) ) )
1512, 13, 14sylancl 662 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  a : NN0 --> ( S  u.  { 0 } ) ) )
163, 15mpbid 210 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a : NN0 --> ( S  u.  { 0 } ) )
17 dgrval.1 . . . . . . . 8  |-  A  =  (coeff `  F )
18 simplrl 759 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  n  e.  NN0 )
19 fss 5739 . . . . . . . . . 10  |-  ( ( a : NN0 --> ( S  u.  { 0 } )  /\  ( S  u.  { 0 } )  C_  CC )  ->  a : NN0 --> CC )
2016, 9, 19syl2anc 661 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a : NN0 --> CC )
21 simprl 755 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 } )
22 simprr 756 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )
234, 18, 20, 21, 22coeeq 22387 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
(coeff `  F )  =  a )
2417, 23syl5req 2521 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  =  A )
2524feq1d 5717 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a : NN0 --> ( S  u.  { 0 } )  <->  A : NN0
--> ( S  u.  {
0 } ) ) )
2616, 25mpbid 210 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  A : NN0 --> ( S  u.  { 0 } ) )
2726ex 434 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  A : NN0 --> ( S  u.  { 0 } ) ) )
2827rexlimdvva 2962 . . 3  |-  ( F  e.  (Poly `  S
)  ->  ( E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  A : NN0 --> ( S  u.  { 0 } ) ) )
292, 28mpd 15 . 2  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> ( S  u.  {
0 } ) )
30 nn0ssz 10885 . . 3  |-  NN0  C_  ZZ
31 ffn 5731 . . . . . . . . . . . . . . . 16  |-  ( a : NN0 --> CC  ->  a  Fn  NN0 )
3220, 31syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  Fn  NN0 )
33 elpreima 6001 . . . . . . . . . . . . . . 15  |-  ( a  Fn  NN0  ->  ( x  e.  ( `' a
" ( CC  \  { 0 } ) )  <->  ( x  e. 
NN0  /\  ( a `  x )  e.  ( CC  \  { 0 } ) ) ) )
3432, 33syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( x  e.  ( `' a " ( CC  \  { 0 } ) )  <->  ( x  e.  NN0  /\  ( a `
 x )  e.  ( CC  \  {
0 } ) ) ) )
3534biimpa 484 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  ( `' a " ( CC  \  { 0 } ) ) )  ->  (
x  e.  NN0  /\  ( a `  x
)  e.  ( CC 
\  { 0 } ) ) )
3635simprd 463 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  ( `' a " ( CC  \  { 0 } ) ) )  ->  (
a `  x )  e.  ( CC  \  {
0 } ) )
37 eldifsni 4153 . . . . . . . . . . . 12  |-  ( ( a `  x )  e.  ( CC  \  { 0 } )  ->  ( a `  x )  =/=  0
)
3836, 37syl 16 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  ( `' a " ( CC  \  { 0 } ) ) )  ->  (
a `  x )  =/=  0 )
3935simpld 459 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  ( `' a " ( CC  \  { 0 } ) ) )  ->  x  e.  NN0 )
40 plyco0 22352 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN0  /\  a : NN0 --> CC )  ->  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  <->  A. x  e.  NN0  ( ( a `
 x )  =/=  0  ->  x  <_  n ) ) )
4118, 20, 40syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  <->  A. x  e.  NN0  ( ( a `  x )  =/=  0  ->  x  <_  n )
) )
4221, 41mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  A. x  e.  NN0  ( ( a `  x )  =/=  0  ->  x  <_  n )
)
4342r19.21bi 2833 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  NN0 )  -> 
( ( a `  x )  =/=  0  ->  x  <_  n )
)
4439, 43syldan 470 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  ( `' a " ( CC  \  { 0 } ) ) )  ->  (
( a `  x
)  =/=  0  ->  x  <_  n ) )
4538, 44mpd 15 . . . . . . . . . 10  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  ( `' a " ( CC  \  { 0 } ) ) )  ->  x  <_  n )
4645ralrimiva 2878 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  A. x  e.  ( `' a " ( CC  \  { 0 } ) ) x  <_  n )
4724cnveqd 5178 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  `' a  =  `' A )
4847imaeq1d 5336 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( `' a "
( CC  \  {
0 } ) )  =  ( `' A " ( CC  \  {
0 } ) ) )
4948raleqdv 3064 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( A. x  e.  ( `' a "
( CC  \  {
0 } ) ) x  <_  n  <->  A. x  e.  ( `' A "
( CC  \  {
0 } ) ) x  <_  n )
)
5046, 49mpbid 210 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  A. x  e.  ( `' A " ( CC 
\  { 0 } ) ) x  <_  n )
5150ex 434 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  A. x  e.  ( `' A " ( CC 
\  { 0 } ) ) x  <_  n ) )
5251expr 615 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  n  e.  NN0 )  ->  (
a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  ->  ( ( ( a " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  A. x  e.  ( `' A " ( CC 
\  { 0 } ) ) x  <_  n ) ) )
5352rexlimdv 2953 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  n  e.  NN0 )  ->  ( E. a  e.  (
( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  A. x  e.  ( `' A " ( CC 
\  { 0 } ) ) x  <_  n ) )
5453reximdva 2938 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  ( E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  E. n  e.  NN0  A. x  e.  ( `' A " ( CC 
\  { 0 } ) ) x  <_  n ) )
552, 54mpd 15 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  NN0  A. x  e.  ( `' A "
( CC  \  {
0 } ) ) x  <_  n )
56 ssrexv 3565 . . 3  |-  ( NN0  C_  ZZ  ->  ( E. n  e.  NN0  A. x  e.  ( `' A "
( CC  \  {
0 } ) ) x  <_  n  ->  E. n  e.  ZZ  A. x  e.  ( `' A " ( CC  \  { 0 } ) ) x  <_  n
) )
5730, 55, 56mpsyl 63 . 2  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  ZZ  A. x  e.  ( `' A "
( CC  \  {
0 } ) ) x  <_  n )
5829, 57jca 532 1  |-  ( F  e.  (Poly `  S
)  ->  ( A : NN0 --> ( S  u.  { 0 } )  /\  E. n  e.  ZZ  A. x  e.  ( `' A " ( CC  \  { 0 } ) ) x  <_  n
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113    \ cdif 3473    u. cun 3474    C_ wss 3476   {csn 4027   class class class wbr 4447    |-> cmpt 4505   `'ccnv 4998   "cima 5002    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284    ^m cmap 7420   CCcc 9490   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497    <_ cle 9629   NN0cn0 10795   ZZcz 10864   ZZ>=cuz 11082   ...cfz 11672   ^cexp 12134   sum_csu 13471  Polycply 22344  coeffccoe 22346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-fz 11673  df-fzo 11793  df-fl 11897  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-rlim 13275  df-sum 13472  df-0p 21840  df-ply 22348  df-coe 22350
This theorem is referenced by:  coef  22390  dgrcl  22393  dgrub  22394  dgrlb  22396
  Copyright terms: Public domain W3C validator