MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrle Structured version   Unicode version

Theorem dgrle 21686
Description: Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
dgrle.2  |-  ( ph  ->  N  e.  NN0 )
dgrle.3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
dgrle.4  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( A  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
dgrle  |-  ( ph  ->  (deg `  F )  <_  N )
Distinct variable groups:    z, A    z, k, N    ph, k, z
Allowed substitution hints:    A( k)    S( z, k)    F( z, k)

Proof of Theorem dgrle
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 dgrle.2 . 2  |-  ( ph  ->  N  e.  NN0 )
3 dgrle.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
4 dgrle.4 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( A  x.  ( z ^ k
) ) ) )
51, 2, 3, 4coeeq2 21685 . . . . . . . . 9  |-  ( ph  ->  (coeff `  F )  =  ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) )
65ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  -.  m  <_  N )  -> 
(coeff `  F )  =  ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) )
76fveq1d 5688 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  -.  m  <_  N )  -> 
( (coeff `  F
) `  m )  =  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m ) )
8 nfcv 2574 . . . . . . . . . 10  |-  F/_ k
m
9 nfv 1673 . . . . . . . . . . 11  |-  F/ k  -.  m  <_  N
10 nffvmpt1 5694 . . . . . . . . . . . 12  |-  F/_ k
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )
1110nfeq1 2583 . . . . . . . . . . 11  |-  F/ k ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  =  0
129, 11nfim 1852 . . . . . . . . . 10  |-  F/ k ( -.  m  <_  N  ->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =  0 )
13 breq1 4290 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
k  <_  N  <->  m  <_  N ) )
1413notbid 294 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( -.  k  <_  N  <->  -.  m  <_  N ) )
15 fveq2 5686 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m ) )
1615eqeq1d 2446 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  =  0  <->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =  0 ) )
1714, 16imbi12d 320 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( -.  k  <_  N  ->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  0 )  <->  ( -.  m  <_  N  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =  0 ) ) )
18 iffalse 3794 . . . . . . . . . . . . 13  |-  ( -.  k  <_  N  ->  if ( k  <_  N ,  A ,  0 )  =  0 )
1918fveq2d 5690 . . . . . . . . . . . 12  |-  ( -.  k  <_  N  ->  (  _I  `  if ( k  <_  N ,  A ,  0 ) )  =  (  _I 
`  0 ) )
20 0cn 9370 . . . . . . . . . . . . 13  |-  0  e.  CC
21 fvi 5743 . . . . . . . . . . . . 13  |-  ( 0  e.  CC  ->  (  _I  `  0 )  =  0 )
2220, 21ax-mp 5 . . . . . . . . . . . 12  |-  (  _I 
`  0 )  =  0
2319, 22syl6eq 2486 . . . . . . . . . . 11  |-  ( -.  k  <_  N  ->  (  _I  `  if ( k  <_  N ,  A ,  0 ) )  =  0 )
24 eqid 2438 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) )  =  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) )
2524fvmpt2i 5775 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  (  _I  `  if ( k  <_  N ,  A ,  0 ) ) )
2625eqeq1d 2446 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  0  <->  (  _I  `  if ( k  <_  N ,  A , 
0 ) )  =  0 ) )
2723, 26syl5ibr 221 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( -.  k  <_  N  ->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  0 ) )
288, 12, 17, 27vtoclgaf 3030 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( -.  m  <_  N  ->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =  0 ) )
2928imp 429 . . . . . . . 8  |-  ( ( m  e.  NN0  /\  -.  m  <_  N )  ->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =  0 )
3029adantll 713 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  -.  m  <_  N )  -> 
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  =  0 )
317, 30eqtrd 2470 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  -.  m  <_  N )  -> 
( (coeff `  F
) `  m )  =  0 )
3231ex 434 . . . . 5  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( -.  m  <_  N  ->  (
(coeff `  F ) `  m )  =  0 ) )
3332necon1ad 2673 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
(coeff `  F ) `  m )  =/=  0  ->  m  <_  N )
)
3433ralrimiva 2794 . . 3  |-  ( ph  ->  A. m  e.  NN0  ( ( (coeff `  F ) `  m
)  =/=  0  ->  m  <_  N ) )
35 eqid 2438 . . . . . 6  |-  (coeff `  F )  =  (coeff `  F )
3635coef3 21675 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> CC )
371, 36syl 16 . . . 4  |-  ( ph  ->  (coeff `  F ) : NN0 --> CC )
38 plyco0 21635 . . . 4  |-  ( ( N  e.  NN0  /\  (coeff `  F ) : NN0 --> CC )  -> 
( ( (coeff `  F ) " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 }  <->  A. m  e.  NN0  ( ( (coeff `  F ) `  m
)  =/=  0  ->  m  <_  N ) ) )
392, 37, 38syl2anc 661 . . 3  |-  ( ph  ->  ( ( (coeff `  F ) " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 }  <->  A. m  e.  NN0  ( ( (coeff `  F ) `  m
)  =/=  0  ->  m  <_  N ) ) )
4034, 39mpbird 232 . 2  |-  ( ph  ->  ( (coeff `  F
) " ( ZZ>= `  ( N  +  1
) ) )  =  { 0 } )
41 eqid 2438 . . 3  |-  (deg `  F )  =  (deg
`  F )
4235, 41dgrlb 21679 . 2  |-  ( ( F  e.  (Poly `  S )  /\  N  e.  NN0  /\  ( (coeff `  F ) " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )  ->  (deg `  F
)  <_  N )
431, 2, 40, 42syl3anc 1218 1  |-  ( ph  ->  (deg `  F )  <_  N )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   ifcif 3786   {csn 3872   class class class wbr 4287    e. cmpt 4345    _I cid 4626   "cima 4838   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    <_ cle 9411   NN0cn0 10571   ZZ>=cuz 10853   ...cfz 11429   ^cexp 11857   sum_csu 13155  Polycply 21627  coeffccoe 21629  degcdgr 21630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-rlim 12959  df-sum 13156  df-0p 21123  df-ply 21631  df-coe 21633  df-dgr 21634
This theorem is referenced by:  dgreq  21687  0dgr  21688  coeaddlem  21691  coemullem  21692  taylply2  21808
  Copyright terms: Public domain W3C validator