MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgreq0 Structured version   Visualization version   Unicode version

Theorem dgreq0 23298
Description: The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Fan Zheng, 21-Jun-2016.)
Hypotheses
Ref Expression
dgreq0.1  |-  N  =  (deg `  F )
dgreq0.2  |-  A  =  (coeff `  F )
Assertion
Ref Expression
dgreq0  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0p  <->  ( A `  N )  =  0 ) )

Proof of Theorem dgreq0
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 dgreq0.2 . . . . . 6  |-  A  =  (coeff `  F )
2 fveq2 5879 . . . . . 6  |-  ( F  =  0p  -> 
(coeff `  F )  =  (coeff `  0p
) )
31, 2syl5eq 2517 . . . . 5  |-  ( F  =  0p  ->  A  =  (coeff `  0p ) )
4 coe0 23289 . . . . 5  |-  (coeff ` 
0p )  =  ( NN0  X.  {
0 } )
53, 4syl6eq 2521 . . . 4  |-  ( F  =  0p  ->  A  =  ( NN0  X. 
{ 0 } ) )
6 dgreq0.1 . . . . . 6  |-  N  =  (deg `  F )
7 fveq2 5879 . . . . . 6  |-  ( F  =  0p  -> 
(deg `  F )  =  (deg `  0p
) )
86, 7syl5eq 2517 . . . . 5  |-  ( F  =  0p  ->  N  =  (deg `  0p ) )
9 dgr0 23295 . . . . 5  |-  (deg ` 
0p )  =  0
108, 9syl6eq 2521 . . . 4  |-  ( F  =  0p  ->  N  =  0 )
115, 10fveq12d 5885 . . 3  |-  ( F  =  0p  -> 
( A `  N
)  =  ( ( NN0  X.  { 0 } ) `  0
) )
12 0nn0 10908 . . . 4  |-  0  e.  NN0
13 fvconst2g 6134 . . . 4  |-  ( ( 0  e.  NN0  /\  0  e.  NN0 )  -> 
( ( NN0  X.  { 0 } ) `
 0 )  =  0 )
1412, 12, 13mp2an 686 . . 3  |-  ( ( NN0  X.  { 0 } ) `  0
)  =  0
1511, 14syl6eq 2521 . 2  |-  ( F  =  0p  -> 
( A `  N
)  =  0 )
161coefv0 23281 . . . . . . . 8  |-  ( F  e.  (Poly `  S
)  ->  ( F `  0 )  =  ( A `  0
) )
1716adantr 472 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( F `  0
)  =  ( A `
 0 ) )
18 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  N  e.  NN )
1918nnred 10646 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  N  e.  RR )
2019ltm1d 10561 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( N  -  1 )  <  N )
21 simpll 768 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  F  e.  (Poly `  S ) )
22 nnm1nn0 10935 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
2322adantl 473 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( N  -  1 )  e.  NN0 )
241, 6dgrub 23267 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0  /\  ( A `
 k )  =/=  0 )  ->  k  <_  N )
25243expia 1233 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0 )  ->  (
( A `  k
)  =/=  0  -> 
k  <_  N )
)
2625ad2ant2rl 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( ( A `  k )  =/=  0  ->  k  <_  N ) )
27 simplr 770 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( A `  N )  =  0 )
28 fveq2 5879 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  =  k  ->  ( A `  N )  =  ( A `  k ) )
2928eqeq1d 2473 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =  k  ->  (
( A `  N
)  =  0  <->  ( A `  k )  =  0 ) )
3027, 29syl5ibcom 228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( N  =  k  ->  ( A `
 k )  =  0 ) )
3130necon3d 2664 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( ( A `  k )  =/=  0  ->  N  =/=  k ) )
3226, 31jcad 542 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( ( A `  k )  =/=  0  ->  ( k  <_  N  /\  N  =/=  k ) ) )
33 nn0re 10902 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  k  e.  RR )
3433ad2antll 743 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  k  e.  RR )
35 nnre 10638 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  RR )
3635ad2antrl 742 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  N  e.  RR )
3734, 36ltlend 9797 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( k  <  N  <->  ( k  <_  N  /\  N  =/=  k
) ) )
38 nn0z 10984 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  k  e.  ZZ )
3938ad2antll 743 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  k  e.  ZZ )
40 nnz 10983 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  ZZ )
4140ad2antrl 742 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  N  e.  ZZ )
42 zltlem1 11013 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  <  N  <->  k  <_  ( N  - 
1 ) ) )
4339, 41, 42syl2anc 673 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( k  <  N  <->  k  <_  ( N  -  1 ) ) )
4437, 43bitr3d 263 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( (
k  <_  N  /\  N  =/=  k )  <->  k  <_  ( N  -  1 ) ) )
4532, 44sylibd 222 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  ( N  e.  NN  /\  k  e.  NN0 )
)  ->  ( ( A `  k )  =/=  0  ->  k  <_ 
( N  -  1 ) ) )
4645expr 626 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( k  e.  NN0  ->  ( ( A `  k )  =/=  0  ->  k  <_  ( N  -  1 ) ) ) )
4746ralrimiv 2808 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  ( N  -  1 ) ) )
481coef3 23265 . . . . . . . . . . . . . . 15  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
4948ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  A : NN0 --> CC )
50 plyco0 23225 . . . . . . . . . . . . . 14  |-  ( ( ( N  -  1 )  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  (
( N  -  1 )  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  ( N  -  1 ) ) ) )
5123, 49, 50syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( ( A "
( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  ( N  -  1 ) ) ) )
5247, 51mpbird 240 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( A " ( ZZ>=
`  ( ( N  -  1 )  +  1 ) ) )  =  { 0 } )
531, 6dgrlb 23269 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  ( N  -  1 )  e.  NN0  /\  ( A " ( ZZ>= `  (
( N  -  1 )  +  1 ) ) )  =  {
0 } )  ->  N  <_  ( N  - 
1 ) )
5421, 23, 52, 53syl3anc 1292 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  N  <_  ( N  -  1 ) )
5535adantl 473 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  N  e.  RR )
56 peano2rem 9961 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
5755, 56syl 17 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( N  -  1 )  e.  RR )
5855, 57lenltd 9798 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  ( N  <_  ( N  -  1 )  <->  -.  ( N  -  1 )  <  N ) )
5954, 58mpbid 215 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  /\  N  e.  NN )  ->  -.  ( N  - 
1 )  <  N
)
6020, 59pm2.65da 586 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  -.  N  e.  NN )
61 dgrcl 23266 . . . . . . . . . . . . 13  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
626, 61syl5eqel 2553 . . . . . . . . . . . 12  |-  ( F  e.  (Poly `  S
)  ->  N  e.  NN0 )
6362adantr 472 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  N  e.  NN0 )
64 elnn0 10895 . . . . . . . . . . 11  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
6563, 64sylib 201 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( N  e.  NN  \/  N  =  0
) )
6665ord 384 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( -.  N  e.  NN  ->  N  = 
0 ) )
6760, 66mpd 15 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  N  =  0 )
6867fveq2d 5883 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( A `  N
)  =  ( A `
 0 ) )
69 simpr 468 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( A `  N
)  =  0 )
7017, 68, 693eqtr2d 2511 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( F `  0
)  =  0 )
7170sneqd 3971 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  { ( F ` 
0 ) }  =  { 0 } )
7271xpeq2d 4863 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( CC  X.  {
( F `  0
) } )  =  ( CC  X.  {
0 } ) )
736, 67syl5eqr 2519 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
(deg `  F )  =  0 )
74 0dgrb 23279 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  ( (deg `  F )  =  0  <-> 
F  =  ( CC 
X.  { ( F `
 0 ) } ) ) )
7574adantr 472 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
( (deg `  F
)  =  0  <->  F  =  ( CC  X.  { ( F ` 
0 ) } ) ) )
7673, 75mpbid 215 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  F  =  ( CC  X.  { ( F ` 
0 ) } ) )
77 df-0p 22707 . . . . 5  |-  0p  =  ( CC  X.  { 0 } )
7877a1i 11 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  -> 
0p  =  ( CC  X.  { 0 } ) )
7972, 76, 783eqtr4d 2515 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  ( A `  N )  =  0 )  ->  F  =  0p
)
8079ex 441 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( ( A `  N )  =  0  ->  F  =  0p ) )
8115, 80impbid2 209 1  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0p  <->  ( A `  N )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   {csn 3959   class class class wbr 4395    X. cxp 4837   "cima 4842   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    < clt 9693    <_ cle 9694    - cmin 9880   NNcn 10631   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   0pc0p 22706  Polycply 23217  coeffccoe 23219  degcdgr 23220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-rlim 13630  df-sum 13830  df-0p 22707  df-ply 23221  df-coe 23223  df-dgr 23224
This theorem is referenced by:  dgrlt  23299  dgradd2  23301  dgrmul  23303  dgrcolem2  23307  plymul0or  23313  plydivlem4  23328  plydiveu  23330  vieta1lem2  23343  vieta1  23344  aareccl  23361  ftalem2  24077  ftalem4  24079  ftalem5  24080  ftalem4OLD  24081  ftalem5OLD  24082  signsply0  29512  mpaaeu  36087  elaa2lem  38209  elaa2lemOLD  38210
  Copyright terms: Public domain W3C validator