MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcolem1 Structured version   Unicode version

Theorem dgrcolem1 22404
Description: The degree of a composition of a monomial with a polynomial. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrcolem1.1  |-  N  =  (deg `  G )
dgrcolem1.2  |-  ( ph  ->  M  e.  NN )
dgrcolem1.3  |-  ( ph  ->  N  e.  NN )
dgrcolem1.4  |-  ( ph  ->  G  e.  (Poly `  S ) )
Assertion
Ref Expression
dgrcolem1  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) )  =  ( M  x.  N ) )
Distinct variable groups:    x, G    x, M    ph, x
Allowed substitution hints:    S( x)    N( x)

Proof of Theorem dgrcolem1
Dummy variables  w  d  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrcolem1.2 . 2  |-  ( ph  ->  M  e.  NN )
2 oveq2 6290 . . . . . . 7  |-  ( y  =  1  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^
1 ) )
32mpteq2dv 4534 . . . . . 6  |-  ( y  =  1  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ 1 ) ) )
43fveq2d 5868 . . . . 5  |-  ( y  =  1  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) ) )
5 oveq1 6289 . . . . 5  |-  ( y  =  1  ->  (
y  x.  N )  =  ( 1  x.  N ) )
64, 5eqeq12d 2489 . . . 4  |-  ( y  =  1  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ 1 ) ) )  =  ( 1  x.  N ) ) )
76imbi2d 316 . . 3  |-  ( y  =  1  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  ( 1  x.  N ) ) ) )
8 oveq2 6290 . . . . . . 7  |-  ( y  =  d  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^
d ) )
98mpteq2dv 4534 . . . . . 6  |-  ( y  =  d  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ d ) ) )
109fveq2d 5868 . . . . 5  |-  ( y  =  d  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) ) )
11 oveq1 6289 . . . . 5  |-  ( y  =  d  ->  (
y  x.  N )  =  ( d  x.  N ) )
1210, 11eqeq12d 2489 . . . 4  |-  ( y  =  d  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  =  ( d  x.  N ) ) )
1312imbi2d 316 . . 3  |-  ( y  =  d  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =  ( d  x.  N ) ) ) )
14 oveq2 6290 . . . . . . 7  |-  ( y  =  ( d  +  1 )  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^
( d  +  1 ) ) )
1514mpteq2dv 4534 . . . . . 6  |-  ( y  =  ( d  +  1 )  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ ( d  +  1 ) ) ) )
1615fveq2d 5868 . . . . 5  |-  ( y  =  ( d  +  1 )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
( d  +  1 ) ) ) ) )
17 oveq1 6289 . . . . 5  |-  ( y  =  ( d  +  1 )  ->  (
y  x.  N )  =  ( ( d  +  1 )  x.  N ) )
1816, 17eqeq12d 2489 . . . 4  |-  ( y  =  ( d  +  1 )  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ ( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) )
1918imbi2d 316 . . 3  |-  ( y  =  ( d  +  1 )  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) ) )
20 oveq2 6290 . . . . . . 7  |-  ( y  =  M  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^ M ) )
2120mpteq2dv 4534 . . . . . 6  |-  ( y  =  M  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ M ) ) )
2221fveq2d 5868 . . . . 5  |-  ( y  =  M  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) ) )
23 oveq1 6289 . . . . 5  |-  ( y  =  M  ->  (
y  x.  N )  =  ( M  x.  N ) )
2422, 23eqeq12d 2489 . . . 4  |-  ( y  =  M  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ M ) ) )  =  ( M  x.  N ) ) )
2524imbi2d 316 . . 3  |-  ( y  =  M  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) )  =  ( M  x.  N ) ) ) )
26 dgrcolem1.4 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  (Poly `  S ) )
27 plyf 22330 . . . . . . . . . . 11  |-  ( G  e.  (Poly `  S
)  ->  G : CC
--> CC )
2826, 27syl 16 . . . . . . . . . 10  |-  ( ph  ->  G : CC --> CC )
2928ffvelrnda 6019 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( G `
 x )  e.  CC )
3029exp1d 12269 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( G `  x ) ^ 1 )  =  ( G `  x
) )
3130mpteq2dva 4533 . . . . . . 7  |-  ( ph  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ 1 ) )  =  ( x  e.  CC  |->  ( G `  x ) ) )
3228feqmptd 5918 . . . . . . 7  |-  ( ph  ->  G  =  ( x  e.  CC  |->  ( G `
 x ) ) )
3331, 32eqtr4d 2511 . . . . . 6  |-  ( ph  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ 1 ) )  =  G )
3433fveq2d 5868 . . . . 5  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  (deg `  G
) )
35 dgrcolem1.1 . . . . 5  |-  N  =  (deg `  G )
3634, 35syl6eqr 2526 . . . 4  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  N )
37 dgrcolem1.3 . . . . . 6  |-  ( ph  ->  N  e.  NN )
3837nncnd 10548 . . . . 5  |-  ( ph  ->  N  e.  CC )
3938mulid2d 9610 . . . 4  |-  ( ph  ->  ( 1  x.  N
)  =  N )
4036, 39eqtr4d 2511 . . 3  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  ( 1  x.  N ) )
4129adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  ( G `  x )  e.  CC )
42 nnnn0 10798 . . . . . . . . . . . . . 14  |-  ( d  e.  NN  ->  d  e.  NN0 )
4342adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  d  e. 
NN0 )
4443adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  d  e.  NN0 )
4541, 44expp1d 12275 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  (
( G `  x
) ^ ( d  +  1 ) )  =  ( ( ( G `  x ) ^ d )  x.  ( G `  x
) ) )
4645mpteq2dva 4533 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ ( d  +  1 ) ) )  =  ( x  e.  CC  |->  ( ( ( G `  x ) ^ d )  x.  ( G `  x
) ) ) )
47 cnex 9569 . . . . . . . . . . . 12  |-  CC  e.  _V
4847a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  CC  e.  _V )
49 ovex 6307 . . . . . . . . . . . 12  |-  ( ( G `  x ) ^ d )  e. 
_V
5049a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  (
( G `  x
) ^ d )  e.  _V )
51 eqidd 2468 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ d ) )  =  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )
5232adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  G  =  ( x  e.  CC  |->  ( G `  x ) ) )
5348, 50, 41, 51, 52offval2 6538 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( x  e.  CC  |->  ( ( G `  x
) ^ d ) )  oF  x.  G )  =  ( x  e.  CC  |->  ( ( ( G `  x ) ^ d
)  x.  ( G `
 x ) ) ) )
5446, 53eqtr4d 2511 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ ( d  +  1 ) ) )  =  ( ( x  e.  CC  |->  ( ( G `  x ) ^ d ) )  oF  x.  G
) )
5554fveq2d 5868 . . . . . . . 8  |-  ( (
ph  /\  d  e.  NN )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  (deg `  ( (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  oF  x.  G ) ) )
5655adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  (deg `  ( (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  oF  x.  G ) ) )
57 nncn 10540 . . . . . . . . . . . 12  |-  ( d  e.  NN  ->  d  e.  CC )
5857adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  d  e.  CC )
59 1cnd 9608 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  1  e.  CC )
6038adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  N  e.  CC )
6158, 59, 60adddird 9617 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( d  +  1 )  x.  N )  =  ( ( d  x.  N )  +  ( 1  x.  N ) ) )
6260mulid2d 9610 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  ( 1  x.  N )  =  N )
6362oveq2d 6298 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( d  x.  N )  +  ( 1  x.  N ) )  =  ( ( d  x.  N )  +  N
) )
6461, 63eqtrd 2508 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( d  +  1 )  x.  N )  =  ( ( d  x.  N )  +  N
) )
6564adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
( d  +  1 )  x.  N )  =  ( ( d  x.  N )  +  N ) )
66 eqidd 2468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  ( y  e.  CC  |->  ( y ^ d ) )  =  ( y  e.  CC  |->  ( y ^
d ) ) )
67 oveq1 6289 . . . . . . . . . . . . 13  |-  ( y  =  ( G `  x )  ->  (
y ^ d )  =  ( ( G `
 x ) ^
d ) )
6841, 52, 66, 67fmptco 6052 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( y  e.  CC  |->  ( y ^ d ) )  o.  G )  =  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )
69 ssid 3523 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
7069a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  NN )  ->  CC  C_  CC )
71 plypow 22337 . . . . . . . . . . . . . 14  |-  ( ( CC  C_  CC  /\  1  e.  CC  /\  d  e. 
NN0 )  ->  (
y  e.  CC  |->  ( y ^ d ) )  e.  (Poly `  CC ) )
7270, 59, 43, 71syl3anc 1228 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  ( y  e.  CC  |->  ( y ^ d ) )  e.  (Poly `  CC ) )
73 plyssc 22332 . . . . . . . . . . . . . 14  |-  (Poly `  S )  C_  (Poly `  CC )
7426adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  NN )  ->  G  e.  (Poly `  S )
)
7573, 74sseldi 3502 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  G  e.  (Poly `  CC )
)
76 addcl 9570 . . . . . . . . . . . . . 14  |-  ( ( z  e.  CC  /\  w  e.  CC )  ->  ( z  +  w
)  e.  CC )
7776adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN )  /\  (
z  e.  CC  /\  w  e.  CC )
)  ->  ( z  +  w )  e.  CC )
78 mulcl 9572 . . . . . . . . . . . . . 14  |-  ( ( z  e.  CC  /\  w  e.  CC )  ->  ( z  x.  w
)  e.  CC )
7978adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN )  /\  (
z  e.  CC  /\  w  e.  CC )
)  ->  ( z  x.  w )  e.  CC )
8072, 75, 77, 79plyco 22373 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( y  e.  CC  |->  ( y ^ d ) )  o.  G )  e.  (Poly `  CC ) )
8168, 80eqeltrrd 2556 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ d ) )  e.  (Poly `  CC ) )
8281adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  e.  (Poly `  CC ) )
83 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )
84 simpr 461 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  d  e.  NN )  ->  d  e.  NN )
8537adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  d  e.  NN )  ->  N  e.  NN )
8684, 85nnmulcld 10579 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  NN )  ->  ( d  x.  N )  e.  NN )
8786nnne0d 10576 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  ( d  x.  N )  =/=  0 )
8887adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
d  x.  N )  =/=  0 )
8983, 88eqnetrd 2760 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =/=  0 )
90 fveq2 5864 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =  0p  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  =  (deg
`  0p ) )
91 dgr0 22393 . . . . . . . . . . . . 13  |-  (deg ` 
0p )  =  0
9290, 91syl6eq 2524 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =  0p  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  =  0 )
9392necon3i 2707 . . . . . . . . . . 11  |-  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =/=  0  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =/=  0p )
9489, 93syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =/=  0p )
9575adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  G  e.  (Poly `  CC )
)
9637nnne0d 10576 . . . . . . . . . . . . 13  |-  ( ph  ->  N  =/=  0 )
97 fveq2 5864 . . . . . . . . . . . . . . . 16  |-  ( G  =  0p  -> 
(deg `  G )  =  (deg `  0p
) )
9897, 91syl6eq 2524 . . . . . . . . . . . . . . 15  |-  ( G  =  0p  -> 
(deg `  G )  =  0 )
9935, 98syl5eq 2520 . . . . . . . . . . . . . 14  |-  ( G  =  0p  ->  N  =  0 )
10099necon3i 2707 . . . . . . . . . . . . 13  |-  ( N  =/=  0  ->  G  =/=  0p )
10196, 100syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  G  =/=  0p )
102101adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  G  =/=  0p )
103102adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  G  =/=  0p )
104 eqid 2467 . . . . . . . . . . 11  |-  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )
105104, 35dgrmul 22401 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) )  e.  (Poly `  CC )  /\  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) )  =/=  0p )  /\  ( G  e.  (Poly `  CC )  /\  G  =/=  0p ) )  -> 
(deg `  ( (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  oF  x.  G ) )  =  ( (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  +  N
) )
10682, 94, 95, 103, 105syl22anc 1229 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) )  oF  x.  G ) )  =  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  +  N ) )
107 oveq1 6289 . . . . . . . . . 10  |-  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =  ( d  x.  N )  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  +  N )  =  ( ( d  x.  N )  +  N
) )
108107adantl 466 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  +  N )  =  ( ( d  x.  N )  +  N
) )
109106, 108eqtrd 2508 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) )  oF  x.  G ) )  =  ( ( d  x.  N )  +  N ) )
11065, 109eqtr4d 2511 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
( d  +  1 )  x.  N )  =  (deg `  (
( x  e.  CC  |->  ( ( G `  x ) ^ d
) )  oF  x.  G ) ) )
11156, 110eqtr4d 2511 . . . . . 6  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N
) )
112111ex 434 . . . . 5  |-  ( (
ph  /\  d  e.  NN )  ->  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =  ( d  x.  N )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N
) ) )
113112expcom 435 . . . 4  |-  ( d  e.  NN  ->  ( ph  ->  ( (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
)  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ ( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) ) )
114113a2d 26 . . 3  |-  ( d  e.  NN  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  ( ph  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ ( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) ) )
1157, 13, 19, 25, 40, 114nnind 10550 . 2  |-  ( M  e.  NN  ->  ( ph  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ M ) ) )  =  ( M  x.  N ) ) )
1161, 115mpcom 36 1  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) )  =  ( M  x.  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3113    C_ wss 3476    |-> cmpt 4505    o. ccom 5003   -->wf 5582   ` cfv 5586  (class class class)co 6282    oFcof 6520   CCcc 9486   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493   NNcn 10532   NN0cn0 10791   ^cexp 12130   0pc0p 21811  Polycply 22316  degcdgr 22319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-rlim 13271  df-sum 13468  df-0p 21812  df-ply 22320  df-coe 22322  df-dgr 22323
This theorem is referenced by:  dgrcolem2  22405
  Copyright terms: Public domain W3C validator