MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcolem1 Structured version   Visualization version   Unicode version

Theorem dgrcolem1 23306
Description: The degree of a composition of a monomial with a polynomial. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrcolem1.1  |-  N  =  (deg `  G )
dgrcolem1.2  |-  ( ph  ->  M  e.  NN )
dgrcolem1.3  |-  ( ph  ->  N  e.  NN )
dgrcolem1.4  |-  ( ph  ->  G  e.  (Poly `  S ) )
Assertion
Ref Expression
dgrcolem1  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) )  =  ( M  x.  N ) )
Distinct variable groups:    x, G    x, M    ph, x
Allowed substitution hints:    S( x)    N( x)

Proof of Theorem dgrcolem1
Dummy variables  w  d  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrcolem1.2 . 2  |-  ( ph  ->  M  e.  NN )
2 oveq2 6316 . . . . . . 7  |-  ( y  =  1  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^
1 ) )
32mpteq2dv 4483 . . . . . 6  |-  ( y  =  1  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ 1 ) ) )
43fveq2d 5883 . . . . 5  |-  ( y  =  1  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) ) )
5 oveq1 6315 . . . . 5  |-  ( y  =  1  ->  (
y  x.  N )  =  ( 1  x.  N ) )
64, 5eqeq12d 2486 . . . 4  |-  ( y  =  1  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ 1 ) ) )  =  ( 1  x.  N ) ) )
76imbi2d 323 . . 3  |-  ( y  =  1  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  ( 1  x.  N ) ) ) )
8 oveq2 6316 . . . . . . 7  |-  ( y  =  d  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^
d ) )
98mpteq2dv 4483 . . . . . 6  |-  ( y  =  d  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ d ) ) )
109fveq2d 5883 . . . . 5  |-  ( y  =  d  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) ) )
11 oveq1 6315 . . . . 5  |-  ( y  =  d  ->  (
y  x.  N )  =  ( d  x.  N ) )
1210, 11eqeq12d 2486 . . . 4  |-  ( y  =  d  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  =  ( d  x.  N ) ) )
1312imbi2d 323 . . 3  |-  ( y  =  d  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =  ( d  x.  N ) ) ) )
14 oveq2 6316 . . . . . . 7  |-  ( y  =  ( d  +  1 )  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^
( d  +  1 ) ) )
1514mpteq2dv 4483 . . . . . 6  |-  ( y  =  ( d  +  1 )  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ ( d  +  1 ) ) ) )
1615fveq2d 5883 . . . . 5  |-  ( y  =  ( d  +  1 )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
( d  +  1 ) ) ) ) )
17 oveq1 6315 . . . . 5  |-  ( y  =  ( d  +  1 )  ->  (
y  x.  N )  =  ( ( d  +  1 )  x.  N ) )
1816, 17eqeq12d 2486 . . . 4  |-  ( y  =  ( d  +  1 )  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ ( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) )
1918imbi2d 323 . . 3  |-  ( y  =  ( d  +  1 )  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) ) )
20 oveq2 6316 . . . . . . 7  |-  ( y  =  M  ->  (
( G `  x
) ^ y )  =  ( ( G `
 x ) ^ M ) )
2120mpteq2dv 4483 . . . . . 6  |-  ( y  =  M  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ y ) )  =  ( x  e.  CC  |->  ( ( G `  x ) ^ M ) ) )
2221fveq2d 5883 . . . . 5  |-  ( y  =  M  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) ) )
23 oveq1 6315 . . . . 5  |-  ( y  =  M  ->  (
y  x.  N )  =  ( M  x.  N ) )
2422, 23eqeq12d 2486 . . . 4  |-  ( y  =  M  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
y ) ) )  =  ( y  x.  N )  <->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ M ) ) )  =  ( M  x.  N ) ) )
2524imbi2d 323 . . 3  |-  ( y  =  M  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ y
) ) )  =  ( y  x.  N
) )  <->  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) )  =  ( M  x.  N ) ) ) )
26 dgrcolem1.4 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  (Poly `  S ) )
27 plyf 23231 . . . . . . . . . . 11  |-  ( G  e.  (Poly `  S
)  ->  G : CC
--> CC )
2826, 27syl 17 . . . . . . . . . 10  |-  ( ph  ->  G : CC --> CC )
2928ffvelrnda 6037 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( G `
 x )  e.  CC )
3029exp1d 12449 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( G `  x ) ^ 1 )  =  ( G `  x
) )
3130mpteq2dva 4482 . . . . . . 7  |-  ( ph  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ 1 ) )  =  ( x  e.  CC  |->  ( G `  x ) ) )
3228feqmptd 5932 . . . . . . 7  |-  ( ph  ->  G  =  ( x  e.  CC  |->  ( G `
 x ) ) )
3331, 32eqtr4d 2508 . . . . . 6  |-  ( ph  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ 1 ) )  =  G )
3433fveq2d 5883 . . . . 5  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  (deg `  G
) )
35 dgrcolem1.1 . . . . 5  |-  N  =  (deg `  G )
3634, 35syl6eqr 2523 . . . 4  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  N )
37 dgrcolem1.3 . . . . . 6  |-  ( ph  ->  N  e.  NN )
3837nncnd 10647 . . . . 5  |-  ( ph  ->  N  e.  CC )
3938mulid2d 9679 . . . 4  |-  ( ph  ->  ( 1  x.  N
)  =  N )
4036, 39eqtr4d 2508 . . 3  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
1 ) ) )  =  ( 1  x.  N ) )
4129adantlr 729 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  ( G `  x )  e.  CC )
42 nnnn0 10900 . . . . . . . . . . . . . 14  |-  ( d  e.  NN  ->  d  e.  NN0 )
4342adantl 473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  d  e. 
NN0 )
4443adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  d  e.  NN0 )
4541, 44expp1d 12455 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  (
( G `  x
) ^ ( d  +  1 ) )  =  ( ( ( G `  x ) ^ d )  x.  ( G `  x
) ) )
4645mpteq2dva 4482 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ ( d  +  1 ) ) )  =  ( x  e.  CC  |->  ( ( ( G `  x ) ^ d )  x.  ( G `  x
) ) ) )
47 cnex 9638 . . . . . . . . . . . 12  |-  CC  e.  _V
4847a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  CC  e.  _V )
49 ovex 6336 . . . . . . . . . . . 12  |-  ( ( G `  x ) ^ d )  e. 
_V
5049a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN )  /\  x  e.  CC )  ->  (
( G `  x
) ^ d )  e.  _V )
51 eqidd 2472 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ d ) )  =  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )
5232adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  G  =  ( x  e.  CC  |->  ( G `  x ) ) )
5348, 50, 41, 51, 52offval2 6567 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( x  e.  CC  |->  ( ( G `  x
) ^ d ) )  oF  x.  G )  =  ( x  e.  CC  |->  ( ( ( G `  x ) ^ d
)  x.  ( G `
 x ) ) ) )
5446, 53eqtr4d 2508 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ ( d  +  1 ) ) )  =  ( ( x  e.  CC  |->  ( ( G `  x ) ^ d ) )  oF  x.  G
) )
5554fveq2d 5883 . . . . . . . 8  |-  ( (
ph  /\  d  e.  NN )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  (deg `  ( (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  oF  x.  G ) ) )
5655adantr 472 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  (deg `  ( (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  oF  x.  G ) ) )
57 nncn 10639 . . . . . . . . . . . 12  |-  ( d  e.  NN  ->  d  e.  CC )
5857adantl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  d  e.  CC )
59 1cnd 9677 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  1  e.  CC )
6038adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  N  e.  CC )
6158, 59, 60adddird 9686 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( d  +  1 )  x.  N )  =  ( ( d  x.  N )  +  ( 1  x.  N ) ) )
6260mulid2d 9679 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  ( 1  x.  N )  =  N )
6362oveq2d 6324 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( d  x.  N )  +  ( 1  x.  N ) )  =  ( ( d  x.  N )  +  N
) )
6461, 63eqtrd 2505 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( d  +  1 )  x.  N )  =  ( ( d  x.  N )  +  N
) )
6564adantr 472 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
( d  +  1 )  x.  N )  =  ( ( d  x.  N )  +  N ) )
66 eqidd 2472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  ( y  e.  CC  |->  ( y ^ d ) )  =  ( y  e.  CC  |->  ( y ^
d ) ) )
67 oveq1 6315 . . . . . . . . . . . . 13  |-  ( y  =  ( G `  x )  ->  (
y ^ d )  =  ( ( G `
 x ) ^
d ) )
6841, 52, 66, 67fmptco 6072 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( y  e.  CC  |->  ( y ^ d ) )  o.  G )  =  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )
69 ssid 3437 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
7069a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  NN )  ->  CC  C_  CC )
71 plypow 23238 . . . . . . . . . . . . . 14  |-  ( ( CC  C_  CC  /\  1  e.  CC  /\  d  e. 
NN0 )  ->  (
y  e.  CC  |->  ( y ^ d ) )  e.  (Poly `  CC ) )
7270, 59, 43, 71syl3anc 1292 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  ( y  e.  CC  |->  ( y ^ d ) )  e.  (Poly `  CC ) )
73 plyssc 23233 . . . . . . . . . . . . . 14  |-  (Poly `  S )  C_  (Poly `  CC )
7426adantr 472 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  NN )  ->  G  e.  (Poly `  S )
)
7573, 74sseldi 3416 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  G  e.  (Poly `  CC )
)
76 addcl 9639 . . . . . . . . . . . . . 14  |-  ( ( z  e.  CC  /\  w  e.  CC )  ->  ( z  +  w
)  e.  CC )
7776adantl 473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN )  /\  (
z  e.  CC  /\  w  e.  CC )
)  ->  ( z  +  w )  e.  CC )
78 mulcl 9641 . . . . . . . . . . . . . 14  |-  ( ( z  e.  CC  /\  w  e.  CC )  ->  ( z  x.  w
)  e.  CC )
7978adantl 473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN )  /\  (
z  e.  CC  /\  w  e.  CC )
)  ->  ( z  x.  w )  e.  CC )
8072, 75, 77, 79plyco 23274 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( y  e.  CC  |->  ( y ^ d ) )  o.  G )  e.  (Poly `  CC ) )
8168, 80eqeltrrd 2550 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  ( x  e.  CC  |->  ( ( G `  x ) ^ d ) )  e.  (Poly `  CC ) )
8281adantr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  e.  (Poly `  CC ) )
83 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )
84 simpr 468 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  d  e.  NN )  ->  d  e.  NN )
8537adantr 472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  d  e.  NN )  ->  N  e.  NN )
8684, 85nnmulcld 10679 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  NN )  ->  ( d  x.  N )  e.  NN )
8786nnne0d 10676 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN )  ->  ( d  x.  N )  =/=  0 )
8887adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
d  x.  N )  =/=  0 )
8983, 88eqnetrd 2710 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =/=  0 )
90 fveq2 5879 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =  0p  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  =  (deg
`  0p ) )
91 dgr0 23295 . . . . . . . . . . . . 13  |-  (deg ` 
0p )  =  0
9290, 91syl6eq 2521 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =  0p  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  =  0 )
9392necon3i 2675 . . . . . . . . . . 11  |-  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =/=  0  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =/=  0p )
9489, 93syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  =/=  0p )
9575adantr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  G  e.  (Poly `  CC )
)
9637nnne0d 10676 . . . . . . . . . . . . 13  |-  ( ph  ->  N  =/=  0 )
97 fveq2 5879 . . . . . . . . . . . . . . . 16  |-  ( G  =  0p  -> 
(deg `  G )  =  (deg `  0p
) )
9897, 91syl6eq 2521 . . . . . . . . . . . . . . 15  |-  ( G  =  0p  -> 
(deg `  G )  =  0 )
9935, 98syl5eq 2517 . . . . . . . . . . . . . 14  |-  ( G  =  0p  ->  N  =  0 )
10099necon3i 2675 . . . . . . . . . . . . 13  |-  ( N  =/=  0  ->  G  =/=  0p )
10196, 100syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  G  =/=  0p )
102101adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN )  ->  G  =/=  0p )
103102adantr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  G  =/=  0p )
104 eqid 2471 . . . . . . . . . . 11  |-  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )
105104, 35dgrmul 23303 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) )  e.  (Poly `  CC )  /\  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) )  =/=  0p )  /\  ( G  e.  (Poly `  CC )  /\  G  =/=  0p ) )  -> 
(deg `  ( (
x  e.  CC  |->  ( ( G `  x
) ^ d ) )  oF  x.  G ) )  =  ( (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ d ) ) )  +  N
) )
10682, 94, 95, 103, 105syl22anc 1293 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) )  oF  x.  G ) )  =  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  +  N ) )
107 oveq1 6315 . . . . . . . . . 10  |-  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =  ( d  x.  N )  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  +  N )  =  ( ( d  x.  N )  +  N
) )
108107adantl 473 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
(deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  +  N )  =  ( ( d  x.  N )  +  N
) )
109106, 108eqtrd 2505 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) )  oF  x.  G ) )  =  ( ( d  x.  N )  +  N ) )
11065, 109eqtr4d 2508 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (
( d  +  1 )  x.  N )  =  (deg `  (
( x  e.  CC  |->  ( ( G `  x ) ^ d
) )  oF  x.  G ) ) )
11156, 110eqtr4d 2508 . . . . . 6  |-  ( ( ( ph  /\  d  e.  NN )  /\  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N
) )
112111ex 441 . . . . 5  |-  ( (
ph  /\  d  e.  NN )  ->  ( (deg
`  ( x  e.  CC  |->  ( ( G `
 x ) ^
d ) ) )  =  ( d  x.  N )  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ (
d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N
) ) )
113112expcom 442 . . . 4  |-  ( d  e.  NN  ->  ( ph  ->  ( (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
)  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ ( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) ) )
114113a2d 28 . . 3  |-  ( d  e.  NN  ->  (
( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `  x ) ^ d
) ) )  =  ( d  x.  N
) )  ->  ( ph  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ ( d  +  1 ) ) ) )  =  ( ( d  +  1 )  x.  N ) ) ) )
1157, 13, 19, 25, 40, 114nnind 10649 . 2  |-  ( M  e.  NN  ->  ( ph  ->  (deg `  (
x  e.  CC  |->  ( ( G `  x
) ^ M ) ) )  =  ( M  x.  N ) ) )
1161, 115mpcom 36 1  |-  ( ph  ->  (deg `  ( x  e.  CC  |->  ( ( G `
 x ) ^ M ) ) )  =  ( M  x.  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   _Vcvv 3031    C_ wss 3390    |-> cmpt 4454    o. ccom 4843   -->wf 5585   ` cfv 5589  (class class class)co 6308    oFcof 6548   CCcc 9555   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562   NNcn 10631   NN0cn0 10893   ^cexp 12310   0pc0p 22706  Polycply 23217  degcdgr 23220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-rlim 13630  df-sum 13830  df-0p 22707  df-ply 23221  df-coe 23223  df-dgr 23224
This theorem is referenced by:  dgrcolem2  23307
  Copyright terms: Public domain W3C validator