MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrco Structured version   Visualization version   Unicode version

Theorem dgrco 23229
Description: The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrco.1  |-  M  =  (deg `  F )
dgrco.2  |-  N  =  (deg `  G )
dgrco.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
dgrco.4  |-  ( ph  ->  G  e.  (Poly `  S ) )
Assertion
Ref Expression
dgrco  |-  ( ph  ->  (deg `  ( F  o.  G ) )  =  ( M  x.  N
) )

Proof of Theorem dgrco
Dummy variables  f  x  y  d  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 23154 . . 3  |-  (Poly `  S )  C_  (Poly `  CC )
2 dgrco.3 . . 3  |-  ( ph  ->  F  e.  (Poly `  S ) )
31, 2sseldi 3430 . 2  |-  ( ph  ->  F  e.  (Poly `  CC ) )
4 dgrco.1 . . . 4  |-  M  =  (deg `  F )
5 dgrcl 23187 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
62, 5syl 17 . . . 4  |-  ( ph  ->  (deg `  F )  e.  NN0 )
74, 6syl5eqel 2533 . . 3  |-  ( ph  ->  M  e.  NN0 )
8 breq2 4406 . . . . . . 7  |-  ( x  =  0  ->  (
(deg `  f )  <_  x  <->  (deg `  f )  <_  0 ) )
98imbi1d 319 . . . . . 6  |-  ( x  =  0  ->  (
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  f )  <_  0  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
109ralbidv 2827 . . . . 5  |-  ( x  =  0  ->  ( A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  x  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) )  <->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  0  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
1110imbi2d 318 . . . 4  |-  ( x  =  0  ->  (
( ph  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
0  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
12 breq2 4406 . . . . . . 7  |-  ( x  =  d  ->  (
(deg `  f )  <_  x  <->  (deg `  f )  <_  d ) )
1312imbi1d 319 . . . . . 6  |-  ( x  =  d  ->  (
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  f )  <_  d  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
1413ralbidv 2827 . . . . 5  |-  ( x  =  d  ->  ( A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  x  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) )  <->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  d  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
1514imbi2d 318 . . . 4  |-  ( x  =  d  ->  (
( ph  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
d  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
16 breq2 4406 . . . . . . 7  |-  ( x  =  ( d  +  1 )  ->  (
(deg `  f )  <_  x  <->  (deg `  f )  <_  ( d  +  1 ) ) )
1716imbi1d 319 . . . . . 6  |-  ( x  =  ( d  +  1 )  ->  (
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  f )  <_  (
d  +  1 )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) )
1817ralbidv 2827 . . . . 5  |-  ( x  =  ( d  +  1 )  ->  ( A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  x  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) )  <->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
1918imbi2d 318 . . . 4  |-  ( x  =  ( d  +  1 )  ->  (
( ph  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
( d  +  1 )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
20 breq2 4406 . . . . . . 7  |-  ( x  =  M  ->  (
(deg `  f )  <_  x  <->  (deg `  f )  <_  M ) )
2120imbi1d 319 . . . . . 6  |-  ( x  =  M  ->  (
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  f )  <_  M  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
2221ralbidv 2827 . . . . 5  |-  ( x  =  M  ->  ( A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  x  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) )  <->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  M  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
2322imbi2d 318 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  M  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
24 dgrco.2 . . . . . . . . . . . 12  |-  N  =  (deg `  G )
25 dgrco.4 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  (Poly `  S ) )
26 dgrcl 23187 . . . . . . . . . . . . 13  |-  ( G  e.  (Poly `  S
)  ->  (deg `  G
)  e.  NN0 )
2725, 26syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  G )  e.  NN0 )
2824, 27syl5eqel 2533 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
2928nn0cnd 10927 . . . . . . . . . 10  |-  ( ph  ->  N  e.  CC )
3029adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  ->  N  e.  CC )
3130mul02d 9831 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( 0  x.  N
)  =  0 )
32 simprr 766 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  <_  0 )
33 dgrcl 23187 . . . . . . . . . . . 12  |-  ( f  e.  (Poly `  CC )  ->  (deg `  f
)  e.  NN0 )
3433ad2antrl 734 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  e.  NN0 )
3534nn0ge0d 10928 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
0  <_  (deg `  f
) )
3634nn0red 10926 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  e.  RR )
37 0re 9643 . . . . . . . . . . 11  |-  0  e.  RR
38 letri3 9719 . . . . . . . . . . 11  |-  ( ( (deg `  f )  e.  RR  /\  0  e.  RR )  ->  (
(deg `  f )  =  0  <->  ( (deg `  f )  <_  0  /\  0  <_  (deg `  f ) ) ) )
3936, 37, 38sylancl 668 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( (deg `  f
)  =  0  <->  (
(deg `  f )  <_  0  /\  0  <_ 
(deg `  f )
) ) )
4032, 35, 39mpbir2and 933 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  =  0 )
4140oveq1d 6305 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( (deg `  f
)  x.  N )  =  ( 0  x.  N ) )
4231, 41, 403eqtr4d 2495 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( (deg `  f
)  x.  N )  =  (deg `  f
) )
43 fconstmpt 4878 . . . . . . . . 9  |-  ( CC 
X.  { ( f `
 0 ) } )  =  ( y  e.  CC  |->  ( f `
 0 ) )
44 0dgrb 23200 . . . . . . . . . . 11  |-  ( f  e.  (Poly `  CC )  ->  ( (deg `  f )  =  0  <-> 
f  =  ( CC 
X.  { ( f `
 0 ) } ) ) )
4544ad2antrl 734 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( (deg `  f
)  =  0  <->  f  =  ( CC  X.  { ( f ` 
0 ) } ) ) )
4640, 45mpbid 214 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
f  =  ( CC 
X.  { ( f `
 0 ) } ) )
4725adantr 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  ->  G  e.  (Poly `  S
) )
48 plyf 23152 . . . . . . . . . . . 12  |-  ( G  e.  (Poly `  S
)  ->  G : CC
--> CC )
4947, 48syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  ->  G : CC --> CC )
5049ffvelrnda 6022 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0
) )  /\  y  e.  CC )  ->  ( G `  y )  e.  CC )
5149feqmptd 5918 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  ->  G  =  ( y  e.  CC  |->  ( G `  y ) ) )
52 fconstmpt 4878 . . . . . . . . . . 11  |-  ( CC 
X.  { ( f `
 0 ) } )  =  ( x  e.  CC  |->  ( f `
 0 ) )
5346, 52syl6eq 2501 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
f  =  ( x  e.  CC  |->  ( f `
 0 ) ) )
54 eqidd 2452 . . . . . . . . . 10  |-  ( x  =  ( G `  y )  ->  (
f `  0 )  =  ( f ` 
0 ) )
5550, 51, 53, 54fmptco 6056 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( f  o.  G
)  =  ( y  e.  CC  |->  ( f `
 0 ) ) )
5643, 46, 553eqtr4a 2511 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
f  =  ( f  o.  G ) )
5756fveq2d 5869 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  =  (deg `  ( f  o.  G ) ) )
5842, 57eqtr2d 2486 . . . . . 6  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )
5958expr 620 . . . . 5  |-  ( (
ph  /\  f  e.  (Poly `  CC ) )  ->  ( (deg `  f )  <_  0  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
6059ralrimiva 2802 . . . 4  |-  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
0  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )
61 fveq2 5865 . . . . . . . . . 10  |-  ( f  =  g  ->  (deg `  f )  =  (deg
`  g ) )
6261breq1d 4412 . . . . . . . . 9  |-  ( f  =  g  ->  (
(deg `  f )  <_  d  <->  (deg `  g )  <_  d ) )
63 coeq1 4992 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
f  o.  G )  =  ( g  o.  G ) )
6463fveq2d 5869 . . . . . . . . . 10  |-  ( f  =  g  ->  (deg `  ( f  o.  G
) )  =  (deg
`  ( g  o.  G ) ) )
6561oveq1d 6305 . . . . . . . . . 10  |-  ( f  =  g  ->  (
(deg `  f )  x.  N )  =  ( (deg `  g )  x.  N ) )
6664, 65eqeq12d 2466 . . . . . . . . 9  |-  ( f  =  g  ->  (
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N )  <-> 
(deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )
6762, 66imbi12d 322 . . . . . . . 8  |-  ( f  =  g  ->  (
( (deg `  f
)  <_  d  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )
6867cbvralv 3019 . . . . . . 7  |-  ( A. f  e.  (Poly `  CC ) ( (deg `  f )  <_  d  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  A. g  e.  (Poly `  CC ) ( (deg
`  g )  <_ 
d  ->  (deg `  (
g  o.  G ) )  =  ( (deg
`  g )  x.  N ) ) )
6933ad2antrl 734 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
(deg `  f )  e.  NN0 )
7069nn0red 10926 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
(deg `  f )  e.  RR )
71 nn0p1nn 10909 . . . . . . . . . . . . 13  |-  ( d  e.  NN0  ->  ( d  +  1 )  e.  NN )
7271ad2antlr 733 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( d  +  1 )  e.  NN )
7372nnred 10624 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( d  +  1 )  e.  RR )
7470, 73leloed 9778 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <_  ( d  +  1 )  <->  ( (deg `  f )  <  (
d  +  1 )  \/  (deg `  f
)  =  ( d  +  1 ) ) ) )
75 simplr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
d  e.  NN0 )
76 nn0leltp1 10995 . . . . . . . . . . . . 13  |-  ( ( (deg `  f )  e.  NN0  /\  d  e. 
NN0 )  ->  (
(deg `  f )  <_  d  <->  (deg `  f )  <  ( d  +  1 ) ) )
7769, 75, 76syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <_  d  <->  (deg `  f
)  <  ( d  +  1 ) ) )
78 fveq2 5865 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (deg `  g )  =  (deg
`  f ) )
7978breq1d 4412 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  (
(deg `  g )  <_  d  <->  (deg `  f )  <_  d ) )
80 coeq1 4992 . . . . . . . . . . . . . . . . 17  |-  ( g  =  f  ->  (
g  o.  G )  =  ( f  o.  G ) )
8180fveq2d 5869 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (deg `  ( g  o.  G
) )  =  (deg
`  ( f  o.  G ) ) )
8278oveq1d 6305 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (
(deg `  g )  x.  N )  =  ( (deg `  f )  x.  N ) )
8381, 82eqeq12d 2466 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  (
(deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N )  <-> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
8479, 83imbi12d 322 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  (
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  <->  ( (deg `  f )  <_  d  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
8584rspcva 3148 . . . . . . . . . . . . 13  |-  ( ( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  ->  (
(deg `  f )  <_  d  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )
8685adantl 468 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <_  d  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
8777, 86sylbird 239 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
88 eqid 2451 . . . . . . . . . . . . 13  |-  (deg `  f )  =  (deg
`  f )
89 simprll 772 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  f  e.  (Poly `  CC )
)
901, 25sseldi 3430 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  e.  (Poly `  CC ) )
9190ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  G  e.  (Poly `  CC )
)
92 eqid 2451 . . . . . . . . . . . . 13  |-  (coeff `  f )  =  (coeff `  f )
93 simplr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  d  e.  NN0 )
94 simprr 766 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  (deg `  f )  =  ( d  +  1 ) )
95 simprlr 773 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )
96 fveq2 5865 . . . . . . . . . . . . . . . . 17  |-  ( g  =  h  ->  (deg `  g )  =  (deg
`  h ) )
9796breq1d 4412 . . . . . . . . . . . . . . . 16  |-  ( g  =  h  ->  (
(deg `  g )  <_  d  <->  (deg `  h )  <_  d ) )
98 coeq1 4992 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  h  ->  (
g  o.  G )  =  ( h  o.  G ) )
9998fveq2d 5869 . . . . . . . . . . . . . . . . 17  |-  ( g  =  h  ->  (deg `  ( g  o.  G
) )  =  (deg
`  ( h  o.  G ) ) )
10096oveq1d 6305 . . . . . . . . . . . . . . . . 17  |-  ( g  =  h  ->  (
(deg `  g )  x.  N )  =  ( (deg `  h )  x.  N ) )
10199, 100eqeq12d 2466 . . . . . . . . . . . . . . . 16  |-  ( g  =  h  ->  (
(deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N )  <-> 
(deg `  ( h  o.  G ) )  =  ( (deg `  h
)  x.  N ) ) )
10297, 101imbi12d 322 . . . . . . . . . . . . . . 15  |-  ( g  =  h  ->  (
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  <->  ( (deg `  h )  <_  d  ->  (deg `  ( h  o.  G ) )  =  ( (deg `  h
)  x.  N ) ) ) )
103102cbvralv 3019 . . . . . . . . . . . . . 14  |-  ( A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  <->  A. h  e.  (Poly `  CC ) ( (deg
`  h )  <_ 
d  ->  (deg `  (
h  o.  G ) )  =  ( (deg
`  h )  x.  N ) ) )
10495, 103sylib 200 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  A. h  e.  (Poly `  CC )
( (deg `  h
)  <_  d  ->  (deg
`  ( h  o.  G ) )  =  ( (deg `  h
)  x.  N ) ) )
10588, 24, 89, 91, 92, 93, 94, 104dgrcolem2 23228 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  (deg `  ( f  o.  G
) )  =  ( (deg `  f )  x.  N ) )
106105expr 620 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  =  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
10787, 106jaod 382 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( ( (deg `  f )  <  (
d  +  1 )  \/  (deg `  f
)  =  ( d  +  1 ) )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )
10874, 107sylbid 219 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
109108expr 620 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  CC )
)  ->  ( A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  ->  ( (deg `  f )  <_  (
d  +  1 )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) )
110109ralrimdva 2806 . . . . . . 7  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
11168, 110syl5bi 221 . . . . . 6  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( A. f  e.  (Poly `  CC ) ( (deg `  f )  <_  d  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
112111expcom 437 . . . . 5  |-  ( d  e.  NN0  ->  ( ph  ->  ( A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  d  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) ) )
113112a2d 29 . . . 4  |-  ( d  e.  NN0  ->  ( (
ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
d  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )  ->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg `  f )  <_  (
d  +  1 )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
11411, 15, 19, 23, 60, 113nn0ind 11030 . . 3  |-  ( M  e.  NN0  ->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  M  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) )
1157, 114mpcom 37 . 2  |-  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  M  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )
1167nn0red 10926 . . 3  |-  ( ph  ->  M  e.  RR )
117116leidd 10180 . 2  |-  ( ph  ->  M  <_  M )
118 fveq2 5865 . . . . . 6  |-  ( f  =  F  ->  (deg `  f )  =  (deg
`  F ) )
119118, 4syl6eqr 2503 . . . . 5  |-  ( f  =  F  ->  (deg `  f )  =  M )
120119breq1d 4412 . . . 4  |-  ( f  =  F  ->  (
(deg `  f )  <_  M  <->  M  <_  M ) )
121 coeq1 4992 . . . . . 6  |-  ( f  =  F  ->  (
f  o.  G )  =  ( F  o.  G ) )
122121fveq2d 5869 . . . . 5  |-  ( f  =  F  ->  (deg `  ( f  o.  G
) )  =  (deg
`  ( F  o.  G ) ) )
123119oveq1d 6305 . . . . 5  |-  ( f  =  F  ->  (
(deg `  f )  x.  N )  =  ( M  x.  N ) )
124122, 123eqeq12d 2466 . . . 4  |-  ( f  =  F  ->  (
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N )  <-> 
(deg `  ( F  o.  G ) )  =  ( M  x.  N
) ) )
125120, 124imbi12d 322 . . 3  |-  ( f  =  F  ->  (
( (deg `  f
)  <_  M  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( M  <_  M  ->  (deg `  ( F  o.  G )
)  =  ( M  x.  N ) ) ) )
126125rspcv 3146 . 2  |-  ( F  e.  (Poly `  CC )  ->  ( A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  M  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  ->  ( M  <_  M  ->  (deg `  ( F  o.  G )
)  =  ( M  x.  N ) ) ) )
1273, 115, 117, 126syl3c 63 1  |-  ( ph  ->  (deg `  ( F  o.  G ) )  =  ( M  x.  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    = wceq 1444    e. wcel 1887   A.wral 2737   {csn 3968   class class class wbr 4402    |-> cmpt 4461    X. cxp 4832    o. ccom 4838   -->wf 5578   ` cfv 5582  (class class class)co 6290   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544    < clt 9675    <_ cle 9676   NNcn 10609   NN0cn0 10869  Polycply 23138  coeffccoe 23140  degcdgr 23141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11785  df-fzo 11916  df-fl 12028  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13552  df-rlim 13553  df-sum 13753  df-0p 22628  df-ply 23142  df-coe 23144  df-dgr 23145
This theorem is referenced by:  taylply2  23323  ftalem7  24005
  Copyright terms: Public domain W3C validator