MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcl Structured version   Unicode version

Theorem dgrcl 21644
Description: The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
dgrcl  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )

Proof of Theorem dgrcl
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . . 3  |-  (coeff `  F )  =  (coeff `  F )
21dgrval 21639 . 2  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  =  sup (
( `' (coeff `  F ) " ( CC  \  { 0 } ) ) ,  NN0 ,  <  ) )
3 nn0ssre 10579 . . . . 5  |-  NN0  C_  RR
4 ltso 9451 . . . . 5  |-  <  Or  RR
5 soss 4655 . . . . 5  |-  ( NN0  C_  RR  ->  (  <  Or  RR  ->  <  Or  NN0 ) )
63, 4, 5mp2 9 . . . 4  |-  <  Or  NN0
76a1i 11 . . 3  |-  ( F  e.  (Poly `  S
)  ->  <  Or  NN0 )
8 0zd 10654 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  0  e.  ZZ )
9 cnvimass 5186 . . . . 5  |-  ( `' (coeff `  F ) " ( CC  \  { 0 } ) )  C_  dom  (coeff `  F )
101coef 21641 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> ( S  u.  { 0 } ) )
11 fdm 5560 . . . . . 6  |-  ( (coeff `  F ) : NN0 --> ( S  u.  { 0 } )  ->  dom  (coeff `  F )  = 
NN0 )
1210, 11syl 16 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  dom  (coeff `  F )  =  NN0 )
139, 12syl5sseq 3401 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  ( `' (coeff `  F ) "
( CC  \  {
0 } ) ) 
C_  NN0 )
141dgrlem 21640 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  ( (coeff `  F ) : NN0 --> ( S  u.  { 0 } )  /\  E. n  e.  ZZ  A. x  e.  ( `' (coeff `  F ) " ( CC  \  { 0 } ) ) x  <_  n ) )
1514simprd 460 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  ZZ  A. x  e.  ( `' (coeff `  F ) " ( CC  \  { 0 } ) ) x  <_  n )
16 nn0uz 10891 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
1716uzsupss 10943 . . . 4  |-  ( ( 0  e.  ZZ  /\  ( `' (coeff `  F ) " ( CC  \  { 0 } ) )  C_  NN0  /\  E. n  e.  ZZ  A. x  e.  ( `' (coeff `  F ) " ( CC  \  { 0 } ) ) x  <_  n )  ->  E. n  e.  NN0  ( A. x  e.  ( `' (coeff `  F ) " ( CC  \  { 0 } ) )  -.  n  <  x  /\  A. x  e.  NN0  ( x  < 
n  ->  E. y  e.  ( `' (coeff `  F ) " ( CC  \  { 0 } ) ) x  < 
y ) ) )
188, 13, 15, 17syl3anc 1213 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  NN0  ( A. x  e.  ( `' (coeff `  F ) " ( CC  \  { 0 } ) )  -.  n  <  x  /\  A. x  e.  NN0  ( x  < 
n  ->  E. y  e.  ( `' (coeff `  F ) " ( CC  \  { 0 } ) ) x  < 
y ) ) )
197, 18supcl 7704 . 2  |-  ( F  e.  (Poly `  S
)  ->  sup (
( `' (coeff `  F ) " ( CC  \  { 0 } ) ) ,  NN0 ,  <  )  e.  NN0 )
202, 19eqeltrd 2515 1  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714    \ cdif 3322    u. cun 3323    C_ wss 3325   {csn 3874   class class class wbr 4289    Or wor 4636   `'ccnv 4835   dom cdm 4836   "cima 4839   -->wf 5411   ` cfv 5415   supcsup 7686   CCcc 9276   RRcr 9277   0cc0 9278    < clt 9414    <_ cle 9415   NN0cn0 10575   ZZcz 10642  Polycply 21595  coeffccoe 21597  degcdgr 21598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-rlim 12963  df-sum 13160  df-0p 21048  df-ply 21599  df-coe 21601  df-dgr 21602
This theorem is referenced by:  dgrub  21645  dgrub2  21646  dgrlb  21647  coeidlem  21648  plyco  21652  dgreq  21655  0dgr  21656  coefv0  21658  coeaddlem  21659  coemullem  21660  coemulhi  21664  dgreq0  21675  dgrlt  21676  dgradd2  21678  dgrmul  21680  dgrmulc  21681  dgrcolem2  21684  dgrco  21685  plycj  21687  coecj  21688  plymul0or  21690  dvply2g  21694  plydivlem3  21704  plydivlem4  21705  plydivex  21706  plydiveu  21707  plyrem  21714  fta1lem  21716  fta1  21717  quotcan  21718  vieta1lem1  21719  vieta1lem2  21720  elqaalem2  21729  elqaalem3  21730  aareccl  21735  aannenlem1  21737  aannenlem2  21738  aalioulem1  21741  aaliou2  21749  taylply2  21776  signsplypnf  26865  signsply0  26866  dgrnznn  29401  dgraa0p  29415  mpaaeu  29416
  Copyright terms: Public domain W3C validator