MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgradd2 Structured version   Unicode version

Theorem dgradd2 21747
Description: The degree of a sum of polynomials of unequal degrees is the degree of the larger polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgradd.1  |-  M  =  (deg `  F )
dgradd.2  |-  N  =  (deg `  G )
Assertion
Ref Expression
dgradd2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  (deg `  ( F  oF  +  G
) )  =  N )

Proof of Theorem dgradd2
StepHypRef Expression
1 plyaddcl 21700 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( F  oF  +  G
)  e.  (Poly `  CC ) )
213adant3 1008 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( F  oF  +  G )  e.  (Poly `  CC )
)
3 dgrcl 21713 . . . . 5  |-  ( ( F  oF  +  G )  e.  (Poly `  CC )  ->  (deg `  ( F  oF  +  G ) )  e.  NN0 )
42, 3syl 16 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  (deg `  ( F  oF  +  G
) )  e.  NN0 )
54nn0red 10649 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  (deg `  ( F  oF  +  G
) )  e.  RR )
6 dgradd.2 . . . . . . 7  |-  N  =  (deg `  G )
7 dgrcl 21713 . . . . . . 7  |-  ( G  e.  (Poly `  S
)  ->  (deg `  G
)  e.  NN0 )
86, 7syl5eqel 2527 . . . . . 6  |-  ( G  e.  (Poly `  S
)  ->  N  e.  NN0 )
983ad2ant2 1010 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  N  e.  NN0 )
109nn0red 10649 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  N  e.  RR )
11 dgradd.1 . . . . . . 7  |-  M  =  (deg `  F )
12 dgrcl 21713 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
1311, 12syl5eqel 2527 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  M  e.  NN0 )
14133ad2ant1 1009 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  M  e.  NN0 )
1514nn0red 10649 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  M  e.  RR )
16 ifcl 3843 . . . 4  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  if ( M  <_  N ,  N ,  M )  e.  RR )
1710, 15, 16syl2anc 661 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  if ( M  <_  N ,  N ,  M )  e.  RR )
1811, 6dgradd 21746 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  (deg `  ( F  oF  +  G
) )  <_  if ( M  <_  N ,  N ,  M )
)
19183adant3 1008 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  (deg `  ( F  oF  +  G
) )  <_  if ( M  <_  N ,  N ,  M )
)
2010leidd 9918 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  N  <_  N
)
21 simp3 990 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  M  <  N
)
2215, 10, 21ltled 9534 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  M  <_  N
)
23 breq1 4307 . . . . 5  |-  ( N  =  if ( M  <_  N ,  N ,  M )  ->  ( N  <_  N  <->  if ( M  <_  N ,  N ,  M )  <_  N
) )
24 breq1 4307 . . . . 5  |-  ( M  =  if ( M  <_  N ,  N ,  M )  ->  ( M  <_  N  <->  if ( M  <_  N ,  N ,  M )  <_  N
) )
2523, 24ifboth 3837 . . . 4  |-  ( ( N  <_  N  /\  M  <_  N )  ->  if ( M  <_  N ,  N ,  M )  <_  N )
2620, 22, 25syl2anc 661 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  if ( M  <_  N ,  N ,  M )  <_  N
)
275, 17, 10, 19, 26letrd 9540 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  (deg `  ( F  oF  +  G
) )  <_  N
)
28 eqid 2443 . . . . . . . 8  |-  (coeff `  F )  =  (coeff `  F )
29 eqid 2443 . . . . . . . 8  |-  (coeff `  G )  =  (coeff `  G )
3028, 29coeadd 21730 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  (coeff `  ( F  oF  +  G
) )  =  ( (coeff `  F )  oF  +  (coeff `  G ) ) )
31303adant3 1008 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  (coeff `  ( F  oF  +  G
) )  =  ( (coeff `  F )  oF  +  (coeff `  G ) ) )
3231fveq1d 5705 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( (coeff `  ( F  oF  +  G ) ) `  N )  =  ( ( (coeff `  F
)  oF  +  (coeff `  G ) ) `
 N ) )
3328coef3 21712 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> CC )
34333ad2ant1 1009 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  (coeff `  F
) : NN0 --> CC )
35 ffn 5571 . . . . . . . 8  |-  ( (coeff `  F ) : NN0 --> CC 
->  (coeff `  F )  Fn  NN0 )
3634, 35syl 16 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  (coeff `  F
)  Fn  NN0 )
3729coef3 21712 . . . . . . . . 9  |-  ( G  e.  (Poly `  S
)  ->  (coeff `  G
) : NN0 --> CC )
38373ad2ant2 1010 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  (coeff `  G
) : NN0 --> CC )
39 ffn 5571 . . . . . . . 8  |-  ( (coeff `  G ) : NN0 --> CC 
->  (coeff `  G )  Fn  NN0 )
4038, 39syl 16 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  (coeff `  G
)  Fn  NN0 )
41 nn0ex 10597 . . . . . . . 8  |-  NN0  e.  _V
4241a1i 11 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  NN0  e.  _V )
43 inidm 3571 . . . . . . 7  |-  ( NN0 
i^i  NN0 )  =  NN0
4415, 10ltnled 9533 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( M  < 
N  <->  -.  N  <_  M ) )
4521, 44mpbid 210 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  -.  N  <_  M )
46 simp1 988 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  F  e.  (Poly `  S ) )
4728, 11dgrub 21714 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  N  e.  NN0  /\  ( (coeff `  F ) `  N
)  =/=  0 )  ->  N  <_  M
)
48473expia 1189 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  N  e.  NN0 )  ->  (
( (coeff `  F
) `  N )  =/=  0  ->  N  <_  M ) )
4946, 9, 48syl2anc 661 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( ( (coeff `  F ) `  N
)  =/=  0  ->  N  <_  M ) )
5049necon1bd 2691 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( -.  N  <_  M  ->  ( (coeff `  F ) `  N
)  =  0 ) )
5145, 50mpd 15 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( (coeff `  F ) `  N
)  =  0 )
5251adantr 465 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  /\  N  e.  NN0 )  ->  ( (coeff `  F ) `  N
)  =  0 )
53 eqidd 2444 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  /\  N  e.  NN0 )  ->  ( (coeff `  G ) `  N
)  =  ( (coeff `  G ) `  N
) )
5436, 40, 42, 42, 43, 52, 53ofval 6341 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  /\  N  e.  NN0 )  ->  ( ( (coeff `  F )  oF  +  (coeff `  G
) ) `  N
)  =  ( 0  +  ( (coeff `  G ) `  N
) ) )
559, 54mpdan 668 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( ( (coeff `  F )  oF  +  (coeff `  G
) ) `  N
)  =  ( 0  +  ( (coeff `  G ) `  N
) ) )
5638, 9ffvelrnd 5856 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( (coeff `  G ) `  N
)  e.  CC )
5756addid2d 9582 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( 0  +  ( (coeff `  G
) `  N )
)  =  ( (coeff `  G ) `  N
) )
5832, 55, 573eqtrd 2479 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( (coeff `  ( F  oF  +  G ) ) `  N )  =  ( (coeff `  G ) `  N ) )
59 simp2 989 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  G  e.  (Poly `  S ) )
60 0red 9399 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  0  e.  RR )
6114nn0ge0d 10651 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  0  <_  M
)
6260, 15, 10, 61, 21lelttrd 9541 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  0  <  N
)
6362gt0ne0d 9916 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  N  =/=  0
)
646, 29dgreq0 21744 . . . . . . 7  |-  ( G  e.  (Poly `  S
)  ->  ( G  =  0p  <->  ( (coeff `  G ) `  N
)  =  0 ) )
65 fveq2 5703 . . . . . . . 8  |-  ( G  =  0p  -> 
(deg `  G )  =  (deg `  0p
) )
66 dgr0 21741 . . . . . . . . 9  |-  (deg ` 
0p )  =  0
6766eqcomi 2447 . . . . . . . 8  |-  0  =  (deg `  0p
)
6865, 6, 673eqtr4g 2500 . . . . . . 7  |-  ( G  =  0p  ->  N  =  0 )
6964, 68syl6bir 229 . . . . . 6  |-  ( G  e.  (Poly `  S
)  ->  ( (
(coeff `  G ) `  N )  =  0  ->  N  =  0 ) )
7069necon3d 2658 . . . . 5  |-  ( G  e.  (Poly `  S
)  ->  ( N  =/=  0  ->  ( (coeff `  G ) `  N
)  =/=  0 ) )
7159, 63, 70sylc 60 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( (coeff `  G ) `  N
)  =/=  0 )
7258, 71eqnetrd 2638 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( (coeff `  ( F  oF  +  G ) ) `  N )  =/=  0
)
73 eqid 2443 . . . 4  |-  (coeff `  ( F  oF  +  G ) )  =  (coeff `  ( F  oF  +  G
) )
74 eqid 2443 . . . 4  |-  (deg `  ( F  oF  +  G ) )  =  (deg `  ( F  oF  +  G
) )
7573, 74dgrub 21714 . . 3  |-  ( ( ( F  oF  +  G )  e.  (Poly `  CC )  /\  N  e.  NN0  /\  ( (coeff `  ( F  oF  +  G
) ) `  N
)  =/=  0 )  ->  N  <_  (deg `  ( F  oF  +  G ) ) )
762, 9, 72, 75syl3anc 1218 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  N  <_  (deg `  ( F  oF  +  G ) ) )
775, 10letri3d 9528 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  ( (deg `  ( F  oF  +  G ) )  =  N  <->  ( (deg `  ( F  oF  +  G ) )  <_  N  /\  N  <_  (deg `  ( F  oF  +  G ) ) ) ) )
7827, 76, 77mpbir2and 913 1  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  M  <  N )  ->  (deg `  ( F  oF  +  G
) )  =  N )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2618   _Vcvv 2984   ifcif 3803   class class class wbr 4304    Fn wfn 5425   -->wf 5426   ` cfv 5430  (class class class)co 6103    oFcof 6330   CCcc 9292   RRcr 9293   0cc0 9294    + caddc 9297    < clt 9430    <_ cle 9431   NN0cn0 10591   0pc0p 21159  Polycply 21664  coeffccoe 21666  degcdgr 21667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372  ax-addf 9373
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-of 6332  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-map 7228  df-pm 7229  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-sup 7703  df-oi 7736  df-card 8121  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-n0 10592  df-z 10659  df-uz 10874  df-rp 11004  df-fz 11450  df-fzo 11561  df-fl 11654  df-seq 11819  df-exp 11878  df-hash 12116  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-clim 12978  df-rlim 12979  df-sum 13176  df-0p 21160  df-ply 21668  df-coe 21670  df-dgr 21671
This theorem is referenced by:  dgrcolem2  21753  plyremlem  21782
  Copyright terms: Public domain W3C validator