Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraaval Structured version   Unicode version

Theorem dgraaval 35438
Description: Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
dgraaval  |-  ( A  e.  AA  ->  (degAA `  A )  =  sup ( { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  A )  =  0 ) } ,  RR ,  `'  <  ) )
Distinct variable group:    A, d, p

Proof of Theorem dgraaval
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 fveq2 5805 . . . . . . 7  |-  ( a  =  A  ->  (
p `  a )  =  ( p `  A ) )
21eqeq1d 2404 . . . . . 6  |-  ( a  =  A  ->  (
( p `  a
)  =  0  <->  (
p `  A )  =  0 ) )
32anbi2d 702 . . . . 5  |-  ( a  =  A  ->  (
( (deg `  p
)  =  d  /\  ( p `  a
)  =  0 )  <-> 
( (deg `  p
)  =  d  /\  ( p `  A
)  =  0 ) ) )
43rexbidv 2917 . . . 4  |-  ( a  =  A  ->  ( E. p  e.  (
(Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  a )  =  0 )  <->  E. p  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  A )  =  0 ) ) )
54rabbidv 3050 . . 3  |-  ( a  =  A  ->  { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  {
0p } ) ( (deg `  p
)  =  d  /\  ( p `  a
)  =  0 ) }  =  { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  {
0p } ) ( (deg `  p
)  =  d  /\  ( p `  A
)  =  0 ) } )
65supeq1d 7859 . 2  |-  ( a  =  A  ->  sup ( { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  a )  =  0 ) } ,  RR ,  `'  <  )  =  sup ( { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  {
0p } ) ( (deg `  p
)  =  d  /\  ( p `  A
)  =  0 ) } ,  RR ,  `'  <  ) )
7 df-dgraa 35436 . 2  |- degAA  =  (
a  e.  AA  |->  sup ( { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  { 0p } ) ( (deg
`  p )  =  d  /\  ( p `
 a )  =  0 ) } ,  RR ,  `'  <  ) )
8 gtso 9617 . . 3  |-  `'  <  Or  RR
98supex 7876 . 2  |-  sup ( { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  A )  =  0 ) } ,  RR ,  `'  <  )  e. 
_V
106, 7, 9fvmpt 5888 1  |-  ( A  e.  AA  ->  (degAA `  A )  =  sup ( { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  A )  =  0 ) } ,  RR ,  `'  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   E.wrex 2754   {crab 2757    \ cdif 3410   {csn 3971   `'ccnv 4941   ` cfv 5525   supcsup 7854   RRcr 9441   0cc0 9442    < clt 9578   NNcn 10496   QQcq 11145   0pc0p 22260  Polycply 22765  degcdgr 22768   AAcaa 22894  degAAcdgraa 35434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-resscn 9499  ax-pre-lttri 9516  ax-pre-lttrn 9517
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-po 4743  df-so 4744  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-er 7268  df-en 7475  df-dom 7476  df-sdom 7477  df-sup 7855  df-pnf 9580  df-mnf 9581  df-ltxr 9583  df-dgraa 35436
This theorem is referenced by:  dgraalem  35439  dgraaub  35442
  Copyright terms: Public domain W3C validator