MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfwe2 Structured version   Unicode version

Theorem dfwe2 6595
Description: Alternate definition of well-ordering. Definition 6.24(2) of [TakeutiZaring] p. 30. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
dfwe2  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
Distinct variable groups:    x, y, R    x, A, y

Proof of Theorem dfwe2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-we 4840 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )
2 df-so 4801 . . . 4  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
3 simpr 461 . . . . 5  |-  ( ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
4 ax-1 6 . . . . . . . . . . . . . . 15  |-  ( x R z  ->  (
( x R y  /\  y R z )  ->  x R
z ) )
54a1i 11 . . . . . . . . . . . . . 14  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
x R z  -> 
( ( x R y  /\  y R z )  ->  x R z ) ) )
6 fr2nr 4857 . . . . . . . . . . . . . . . . 17  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  -.  ( x R y  /\  y R x ) )
763adantr3 1157 . . . . . . . . . . . . . . . 16  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  -.  ( x R y  /\  y R x ) )
8 breq2 4451 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
y R x  <->  y R
z ) )
98anbi2d 703 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
( x R y  /\  y R x )  <->  ( x R y  /\  y R z ) ) )
109notbid 294 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( -.  ( x R y  /\  y R x )  <->  -.  ( x R y  /\  y R z ) ) )
117, 10syl5ibcom 220 . . . . . . . . . . . . . . 15  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
x  =  z  ->  -.  ( x R y  /\  y R z ) ) )
12 pm2.21 108 . . . . . . . . . . . . . . 15  |-  ( -.  ( x R y  /\  y R z )  ->  ( (
x R y  /\  y R z )  ->  x R z ) )
1311, 12syl6 33 . . . . . . . . . . . . . 14  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
x  =  z  -> 
( ( x R y  /\  y R z )  ->  x R z ) ) )
14 fr3nr 6593 . . . . . . . . . . . . . . . . 17  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  -.  ( x R y  /\  y R z  /\  z R x ) )
15 df-3an 975 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x R y  /\  y R z  /\  z R x )  <->  ( (
x R y  /\  y R z )  /\  z R x ) )
1615biimpri 206 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x R y  /\  y R z )  /\  z R x )  ->  (
x R y  /\  y R z  /\  z R x ) )
1716ancoms 453 . . . . . . . . . . . . . . . . 17  |-  ( ( z R x  /\  ( x R y  /\  y R z ) )  ->  (
x R y  /\  y R z  /\  z R x ) )
1814, 17nsyl 121 . . . . . . . . . . . . . . . 16  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  -.  ( z R x  /\  ( x R y  /\  y R z ) ) )
1918pm2.21d 106 . . . . . . . . . . . . . . 15  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( z R x  /\  ( x R y  /\  y R z ) )  ->  x R z ) )
2019expd 436 . . . . . . . . . . . . . 14  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
z R x  -> 
( ( x R y  /\  y R z )  ->  x R z ) ) )
215, 13, 203jaod 1292 . . . . . . . . . . . . 13  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x R z  \/  x  =  z  \/  z R x )  ->  ( (
x R y  /\  y R z )  ->  x R z ) ) )
22 frirr 4856 . . . . . . . . . . . . . 14  |-  ( ( R  Fr  A  /\  x  e.  A )  ->  -.  x R x )
23223ad2antr1 1161 . . . . . . . . . . . . 13  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  -.  x R x )
2421, 23jctild 543 . . . . . . . . . . . 12  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x R z  \/  x  =  z  \/  z R x )  ->  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
2524ex 434 . . . . . . . . . . 11  |-  ( R  Fr  A  ->  (
( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( (
x R z  \/  x  =  z  \/  z R x )  ->  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) ) )
2625a2d 26 . . . . . . . . . 10  |-  ( R  Fr  A  ->  (
( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R z  \/  x  =  z  \/  z R x ) )  ->  ( (
x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) ) )
2726alimdv 1685 . . . . . . . . 9  |-  ( R  Fr  A  ->  ( A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R z  \/  x  =  z  \/  z R x ) )  ->  A. z
( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) ) )
28272alimdv 1687 . . . . . . . 8  |-  ( R  Fr  A  ->  ( A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R z  \/  x  =  z  \/  z R x ) )  ->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) ) )
29 r3al 2844 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R z  \/  x  =  z  \/  z R x )  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R z  \/  x  =  z  \/  z R x ) ) )
30 r3al 2844 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
3128, 29, 303imtr4g 270 . . . . . . 7  |-  ( R  Fr  A  ->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x )  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
32 ralidm 3931 . . . . . . . . 9  |-  ( A. y  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
33 breq2 4451 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
x R y  <->  x R
z ) )
34 equequ2 1748 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
x  =  y  <->  x  =  z ) )
35 breq1 4450 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y R x  <->  z R x ) )
3633, 34, 353orbi123d 1298 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( x R y  \/  x  =  y  \/  y R x )  <->  ( x R z  \/  x  =  z  \/  z R x ) ) )
3736cbvralv 3088 . . . . . . . . . 10  |-  ( A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x ) )
3837ralbii 2895 . . . . . . . . 9  |-  ( A. y  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. y  e.  A  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x ) )
3932, 38bitr3i 251 . . . . . . . 8  |-  ( A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. y  e.  A  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x ) )
4039ralbii 2895 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x ) )
41 df-po 4800 . . . . . . 7  |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
4231, 40, 413imtr4g 270 . . . . . 6  |-  ( R  Fr  A  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x )  ->  R  Po  A ) )
4342ancrd 554 . . . . 5  |-  ( R  Fr  A  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x )  ->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) ) )
443, 43impbid2 204 . . . 4  |-  ( R  Fr  A  ->  (
( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
452, 44syl5bb 257 . . 3  |-  ( R  Fr  A  ->  ( R  Or  A  <->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
4645pm5.32i 637 . 2  |-  ( ( R  Fr  A  /\  R  Or  A )  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x ) ) )
471, 46bitri 249 1  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 972    /\ w3a 973   A.wal 1377    e. wcel 1767   A.wral 2814   class class class wbr 4447    Po wpo 4798    Or wor 4799    Fr wfr 4835    We wwe 4837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-po 4800  df-so 4801  df-fr 4838  df-we 4840
This theorem is referenced by:  ordon  6596  f1oweALT  6765  dford2  8033  fpwwe2lem12  9015  fpwwe2lem13  9016  dfon2  28801  fnwe2  30603
  Copyright terms: Public domain W3C validator