Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd3anir Structured version   Visualization version   Unicode version

Theorem dfvd3anir 37034
Description: Right-to-left inference form of dfvd3an 37032. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd3anir.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
dfvd3anir  |-  (. (. ph ,. ps ,. ch ).  ->.  th ).

Proof of Theorem dfvd3anir
StepHypRef Expression
1 dfvd3anir.1 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
2 dfvd3an 37032 . 2  |-  ( (.
(. ph ,. ps ,. ch ).  ->.  th ).  <->  ( ( ph  /\  ps  /\  ch )  ->  th ) )
31, 2mpbir 214 1  |-  (. (. ph ,. ps ,. ch ).  ->.  th ).
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1007   (.wvd1 37007   (.wvhc3 37026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-vd1 37008  df-vhc3 37027
This theorem is referenced by:  el0321old  37165  el123  37214
  Copyright terms: Public domain W3C validator