Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd2i Structured version   Unicode version

Theorem dfvd2i 36596
Description: Inference form of dfvd2 36590. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd2i.1  |-  (. ph ,. ps  ->.  ch ).
Assertion
Ref Expression
dfvd2i  |-  ( ph  ->  ( ps  ->  ch ) )

Proof of Theorem dfvd2i
StepHypRef Expression
1 dfvd2i.1 . 2  |-  (. ph ,. ps  ->.  ch ).
2 dfvd2 36590 . 2  |-  ( (.
ph ,. ps  ->.  ch ).  <->  ( ph  ->  ( ps  ->  ch ) ) )
31, 2mpbi 211 1  |-  ( ph  ->  ( ps  ->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   (.wvd2 36588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372  df-vd2 36589
This theorem is referenced by:  vd23  36622  in2  36625  in2an  36628  gen21  36639  gen21nv  36640  gen22  36642  exinst  36644  exinst01  36645  exinst11  36646  e2  36651  e222  36656  e233  36795  e323  36796
  Copyright terms: Public domain W3C validator