Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd2anir Structured version   Unicode version

Theorem dfvd2anir 36592
Description: Right-to-left inference form of dfvd2an 36590. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd2anir.1  |-  ( (
ph  /\  ps )  ->  ch )
Assertion
Ref Expression
dfvd2anir  |-  (. (. ph ,. ps ).  ->.  ch ).

Proof of Theorem dfvd2anir
StepHypRef Expression
1 dfvd2anir.1 . 2  |-  ( (
ph  /\  ps )  ->  ch )
2 dfvd2an 36590 . 2  |-  ( (.
(. ph ,. ps ).  ->.  ch
). 
<->  ( ( ph  /\  ps )  ->  ch )
)
31, 2mpbir 212 1  |-  (. (. ph ,. ps ).  ->.  ch ).
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370   (.wvd1 36577   (.wvhc2 36588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-vd1 36578  df-vhc2 36589
This theorem is referenced by:  int3  36629  el021old  36718  el2122old  36744  el12  36753
  Copyright terms: Public domain W3C validator