Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd1impr Structured version   Unicode version

Theorem dfvd1impr 36632
Description: Right-to-left part of definition of virtual deduction. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfvd1impr  |-  ( (
ph  ->  ps )  ->  (. ph  ->.  ps ). )

Proof of Theorem dfvd1impr
StepHypRef Expression
1 df-vd1 36626 . 2  |-  ( (.
ph 
->.  ps ).  <->  ( ph  ->  ps ) )
21biimpri 209 1  |-  ( (
ph  ->  ps )  ->  (. ph  ->.  ps ). )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   (.wvd1 36625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-vd1 36626
This theorem is referenced by:  gen11  36681
  Copyright terms: Public domain W3C validator